
(i)

SUBJECT CODE : 310241

PUBLICATIONS
TECHNICAL

An Up-Thrust for Knowledge

®

SINCE 1993

®

Savitribai Phule Pune University

T.E. (Computer) Semester - V

As per Revised Syllabus of

Database Management

Systems

Choice Based Credit System (CBCS)

Anuradha A. Puntambekar
M.E. (Computer)

Formerly Assistant Professor in

P.E.S. Modern College of Engineering,

Pune.

Dr. Pramod Patil
Ph.D. (Computer Engineering)

M.E.

Professor in Computer Engineering

Dr. D.Y. Patil Institute of Technology,

Pimpri Pune.

(Computer Engineering), B.E. (CSE)

SPPU 19

(ii)9789391567347 [1]

I S B N 9 7 8 - 9 3 - 9 1 5 6 7 - 3 4 - 7

9 7 8 9 3 9 1 5 6 7 3 4 7

Subject Code : 310241

Database Management Systems

T.E. (Computer Engineering) Semester - V

� Copyright with Authors

All publishing rights reserved with . No part of this book

should be reproduced in any form, Electronic, Mechanical, Photocopy or any information storage and

retrieval system without prior permission in writing, from Technical Publications, Pune.

(printed and ebook version) Technical Publications

Printer :
Yogiraj Printers & Binders

Sr.No. 10/1A,

Ghule Industrial Estate, Nanded Village Road,

Tal. - Haveli, Dist. - Pune - 411041.

Published by :

Amit Residency, Office No.1, 412, Shaniwar Peth,

Pune - 411030, M.S. INDIA, Ph.: +91-020-24495496/97

Email : sales@technicalpublications.org Website : www.technicalpublications.org

®

SINCE 1993

PUBLICATIONS
TECHNICAL

An Up-Thrust for Knowledge

®

(iii)

Preface
The importance of Database Management Systems is well known in various

engineering fields. Overwhelming response to our books on various subjects inspired us to

write this book. The book is structured to cover the key aspects of the subject Database

Management Systems.

The book uses plain, lucid language to explain fundamentals of this subject. The book

provides logical method of explaining various complicated concepts and stepwise methods

to explain the important topics. Each chapter is well supported with necessary illustrations,

practical examples and solved problems. All the chapters in the book are arranged in a

proper sequence that permits each topic to build upon earlier studies. All care has been

taken to make students comfortable in understanding the basic concepts of the subject.

Representative questions have been added at the end of each section to help the

students in picking important points from that section.

The book not only covers the entire scope of the subject but explains the philosophy of

the subject. This makes the understanding of this subject more clear and makes it more

interesting. The book will be very useful not only to the students but also to the subject

teachers. The students have to omit nothing and possibly have to cover nothing more.

We wish to express our profound thanks to all those who helped in making this book a

reality. Much needed moral support and encouragement is provided on numerous

occasions by our whole family. We wish to thank the Publisher and the entire team of

Technical Publications who have taken immense pain to get this book in time with quality

printing.

Any suggestion for the improvement of the book will be acknowledged and well

appreciated.

 Authors
 A. A. Puntambekar

Pramod Patil

 Dedicated to God.

(iv)

Syllabus
Database Management Systems - 310241

Credit : Examination Scheme :

03 Mid-Sem (TH) : 30 Marks
End-Sem (TH) : 70 Marks

Unit I Introduction to Database Management Systems and ER Model

Introduction, Purpose of Database Systems, Database-System Applications, View of Data, Database

Languages, Database System Structure, Data Models. Database Design and ER Model : Entity,

Attributes, Relationships, Constraints, Keys, Design Process, Entity-Relationship Model, ER Diagram,

Design Issues, Extended E-R Features, converting ER and EER diagram into tables. (Chapter - 1)

Unit II SQL and PL/SQL

SQL : Characteristics and Advantages, SQL Data Types and Literals, DDL, DML, DCL, TCL, SQL

Operators. Tables : Creating, Modifying, Deleting, Updating. SQL DML Queries : SELECT Query and

clauses, Index and Sequence in SQL. Views : Creating, Dropping, Updating using Indexes, Set

Operations, Predicates and Joins, Set membership, Tuple Variables, Set comparison, Ordering of

Tuples, Aggregate Functions, SQL Functions, Nested Queries. PL/SQL : Concept of Stored

Procedures and Functions, Cursors, Triggers, Assertions, Roles and Privileges. (Chapter - 2, 3)

Unit III Relational Database Design

Relational Model : Basic concepts, Attributes and Domains, CODD's Rules. Relational Integrity :

Domain, Referential Integrities, Enterprise Constraints. Database Design : Features of Good

Relational Designs, Normalization, Atomic Domains and First Normal Form, Decomposition using

Functional Dependencies, Algorithms for Decomposition, 2NF, 3NF, BCNF. (Chapter - 4)

Unit IV Database Transaction Management

Introduction to Database Transaction, Transaction states, ACID properties, Concept of Schedule,

Serial Schedule. Serializability : Conflict and View, Cascaded Aborts, Recoverable and Non-

recoverable Schedules. Concurrency Control : Lock-based, Time-stamp based Deadlock handling.

Recovery methods : Shadow-Paging and Log-Based Recovery, Checkpoints. Log-Based Recovery :

Deferred Database Modifications and Immediate Database Modifications. (Chapter - 5)

(v)

Unit V NoSQL Databases

Introduction to Distributed Database System, Advantages, Disadvantages, CAP Theorem.

Types of Data : Structured, Unstructured Data and Semi-Structured Data.

NoSQL Database : Introduction, Need, Features. Types of NoSQL Databases : Key-value store,

document store, graph, wide column stores, BASE Properties, Data Consistency model, ACID Vs

BASE, Comparative study of RDBMS and NoSQL. MongoDB (with syntax and usage) : CRUD

Operations, Indexing, Aggregation, MapReduce, Replication, Sharding. (Chapter - 6)

Unit VI Advances in Databases

Emerging Databases : Active and Deductive Databases, Main Memory Databases, Semantic

Databases.

Complex Data Types :

Semi-Structured Data, Features of Semi-Structured Data Models. Nested Data Types : JSON, XML.

Object Orientation : Object-Relational Database System, Table Inheritance, Object-Relational

Mapping. Spatial Data : Geographic Data, Geometric Data. (Chapter - 7)

(vi)

Table of Contents

Unit - I

Chapter - 1 Introduction to Database Management Systems
and ER Model (1 - 1) to (1 - 68)

Part I : Introduction to DBMS

 1.1 Introduction .. 1 - 2

 1.1.1 Characteristics of Database Approach ... 1 - 2

 1.2 Purpose of Database Systems ... 1 - 2

 1.3 Advantages of DBMS over File Processing Systems .. 1 - 3

 1.3.1 Advantages of DBMS ... 1 - 3

 1.3.2 Disadvantages of DBMS ... 1 - 3

 1.3.3 File Processing System Vs. DBMS .. 1 - 4

 1.4 Database-System Applications .. 1 - 5

 1.5 View of Data .. 1 - 6

 1.6 Data Abstraction ... 1 - 7

 1.7 Database Languages ... 1 - 9

 1.8 Database System Structure ... 1 - 10

 1.8.1 Overall Structure of DBMS ... 1 - 10

 1.8.2 Architecture of DBMS .. 1 - 12

 1.9 Data Models .. 1 - 14

 1.10 Data Independence ... 1 - 19

 1.11 Database Users ... 1 - 20

Part II : Data Modelling

 1.12 Database Design and ER Model .. 1 - 21

 1.12.1 Entity and Entity Sets ... 1 - 21

 1.12.2 Relationships.. 1 - 22

(vii)

 1.12.3 Attributes ... 1 - 22

1.12.3.1 Types of Attributes... 1 - 23

 1.13 Constraints .. 1 - 24

 1.13.1 Types of Cardinality ... 1 - 24

 1.14 Keys ... 1 - 26

 1.15 Design Process .. 1 - 26

 1.16 ER Diagram .. 1 - 28

 1.17 Conventions .. 1 - 29

 1.17.1 Mapping Cardinality Representation ... 1 - 29

 1.17.2 Ternary Relationship .. 1 - 30

 1.17.3 Weak Entity Set.. 1 - 31

 1.18 Design Issues ... 1 - 32

 1.19 Extended E-R Features .. 1 - 34

 1.19.1 Specialization and Generalization.. 1 - 34

 1.19.2 Constraints on Specialization / Generalization .. 1 - 35

 1.19.3 Aggregation ... 1 - 37

 1.20 Converting ER and EER Diagram into Tables ... 1 - 37

 1.20.1 Mapping of Entity Set to Relationship ... 1 - 37

 1.20.2 Mapping Relationship Sets(without Constraints) to Tables 1 - 38

 1.20.3 Mapping Relationship Sets(With Constraints) to Tables 1 - 39

 1.20.4 Mapping Weak Entity Sets to Relational Mapping 1 - 41

 1.20.5 Mapping of Specialization / Generalization(EER Construct)
 to Relational Mapping ... 1 - 41

 1.21 Examples based on ER Diagram .. 1 - 43

 Multiple Choice Questions with Answers ... 1 - 62

Unit - II

Chapter - 2 Structured Query Language (2 - 1) to (2 - 82)

 2.1 Introduction to Structured Query Language... 2 - 3

 2.1.1 Characteristics and Advantages ... 2 - 3

 2.2 SQL Data Types and Literals .. 2 - 3

(viii)

 2.3 DDL, DML, DCL and TCL Structure ... 2 - 4

 2.4 Tables .. 2 - 6

 2.4.1 Creating Table .. 2 - 6

 2.4.2 Insertion of Data into the Table ... 2 - 7

 2.4.3 Modifying the Record from the Table ... 2 - 7

 2.4.4 Deleting Record from the Table .. 2 - 8

 2.5 SQL DML Queries .. 2 - 8

 2.5.1 SELECT Query ... 2 - 9

 2.5.2 WHERE ... 2 - 10

 2.5.3 Clauses ... 2 - 11

 2.6 Logical Operators .. 2 - 14

 2.7 String Operations .. 2 - 16

 2.8 The BETWEEN Operator .. 2 - 18

 2.9 Built-In Functions .. 2 - 18

 2.10 NULL Values .. 2 - 20

 2.11 EXISTS, NOT EXISTS and UNIQUE .. 2 - 22

 2.12 Defining Constraints .. 2 - 24

 2.13 Renaming Attributes ... 2 - 28

 2.14 Tuple Variables .. 2 - 29

 2.15 Schema Change Statements ... 2 - 29

 2.15.1 The DROP Command ... 2 - 29

 2.15.2 The ALTER Command ... 2 - 30

 2.16 Indexes .. 2 - 32

 2.17 Aggregate Functions ... 2 - 33

 2.18 Set Operations .. 2 - 35

 2.19 Nested Queries ... 2 - 37

 2.20 Join Operation ... 2 - 39

 2.21 Views ... 2 - 43

 2.22 Examples Based on SQL .. 2 - 48

(ix)

Chapter - 3 PL / SQL (3 - 1) to (3 - 56)

 3.1 Basics of PL/SQL .. 3 - 2

 3.1.1 How to Set Environment for Executing PL/SQL Scripts ? 3 - 2

 3.2 Writing First PL/SQL Script .. 3 - 4

 3.3 Block Structure of PL/SQL ... 3 - 9

 3.4 PL/SQL Data Types .. 3 - 10

 3.5 PL/SQL Variables ... 3 - 11

 3.6 PL/SQL Constants .. 3 - 14

 3.7 Control Statements ... 3 - 14

 3.7.1 IF Statement .. 3 - 14

 3.7.2 General Loop ... 3 - 16

 3.7.3 For Loop ... 3 - 17

 3.7.4 While Loop ... 3 - 18

 3.7.5 CASE Statement ... 3 - 19

 3.8 Handling Database Tables using PL/SQL ... 3 - 20

 3.9 Examples on PL/SQL .. 3 - 24

 3.10 Concept of Stored Procedures .. 3 - 27

 3.10.1 Procedures without Parameter ... 3 - 28

 3.10.2 Procedures with Parameters ... 3 - 29

 3.10.3 Stored Procedure for Handling Database Table .. 3 - 30

 3.11 Functions ... 3 - 31

 3.11.1 PL/SQL Stored Function for Table .. 3 - 33

 3.12 Cursors .. 3 - 35

 3.13 Triggers .. 3 - 41

 3.14 Assertions .. 3 - 47

 3.15 Roles and Privileges .. 3 - 48

 3.16 Exceptions ... 3 - 49

 Multiple Choice Questions with Answers ... 3 - 54

(x)

Unit - III

Chapter - 4 Relational Database Design (4 - 1) to (4 - 74)

Part I : Relational Model

 4.1 Basic Concepts ... 4 - 3

 4.2 Attributes and Domains .. 4 - 4

 4.3 CODD's Rules ... 4 - 6

Part II : Relational Integrity

 4.4 Keys ... 4 - 7

 4.5 Constraints .. 4 - 11

 4.6 Enterprise Constraints ... 4 - 14

Part III : Database Design

 4.7 Features of Good Relational Designs .. 4 - 14

 4.8 Data Redundancy and Update Anomalies .. 4 - 15

 4.9 Normalization .. 4 - 16

 4.10 Atomic Domains and First Normal Form ... 4 - 17

 4.11 Decomposition using Functional Dependencies ... 4 - 18

 4.11.1 Inference Rules .. 4 - 20

 4.11.2 Keys and Functional Dependencies ... 4 - 23

 4.12 Equivalence and Minimal Cover .. 4 - 25

 4.13 Algorithms for Decomposition .. 4 - 35

 4.14 Lossless Join ... 4 - 37

 4.15 Dependency Preservation ... 4 - 39

 4.16 Second Normal Form (2NF) ... 4 - 44

 4.17 Third Normal Form (3NF) .. 4 - 48

 4.18 BCNF .. 4 - 61

 Multiple Choice Questions with Answers ... 4 - 72

(xi)

Unit - IV

Chapter - 5 Database Transaction Management (5 - 1) to (5 - 66)

Part I : Transaction Management

 5.1 Introduction to Database Transaction .. 5 - 2

 5.2 Transaction States ... 5 - 3

 5.3 ACID Properties ... 5 - 5

 5.4 Concept of Schedule .. 5 - 6

 5.5 Serializability : Conflict and View .. 5 - 7

 5.5.1 Conflict Serializability ... 5 - 9

 5.5.2 View Serializability ... 5 - 20

 5.6 Recoverable and Non-recoverable Schedules .. 5 - 27

 5.6.1 Recoverable Schedule .. 5 - 28

 5.6.2 Cascadeless Schedule .. 5 - 29

Part II : Concurrency Control

 5.7 Concurrency Control ... 5 - 30

 5.8 Need for Concurrency ... 5 - 30

 5.9 Lock-based Protocol .. 5 - 33

 5.9.1 Why Do We Need Lock ? ... 5 - 33

 5.9.2 Working of Lock ... 5 - 33

 5.9.3 Two Phase Locking Protocol .. 5 - 35

5.9.3.1 Types of Two Phase Locking... 5 - 39

 5.10 Time-stamp based Protocol .. 5 - 42

 5.11 Deadlocks Handling ... 5 - 46

 5.12 Recovery Concepts .. 5 - 52

 5.12.1 Purpose of Database Recovery .. 5 - 52

 5.12.2 Failure Classification .. 5 - 53

 5.12.3 Storage ... 5 - 54

 5.13 Recovery Methods .. 5 - 55

(xii)

 5.14 Shadow-paging .. 5 - 55

 5.15 Check Points .. 5 - 56

 5.16 Log-based Recovery : Deferred and Immediate Update 5 - 57

 5.16.1 Concept of Log ... 5 - 57

 5.16.2 REDO and UNDO Operation... 5 - 58

 5.16.3 Write Ahead Logging Rule ... 5 - 58

 5.16.4 Deferred Database Modification ... 5 - 58

 5.16.5 Immediate Database Modification .. 5 - 60

 Multiple Choice Questions with Answers ... 5 - 63

Unit - V

Chapter - 6 NoSQL Databases (6 - 1) to (6 - 40)

 6.1 Introduction to Distributed Database System .. 6 - 2

 6.2 CAP Theorem .. 6 - 3

 6.3 Types of Data : Structured, Unstructured Data and Semi-Structured Data ... 6 - 4

 6.4 NoSQL Database .. 6 - 4

 6.4.1 Introduction ... 6 - 4

 6.4.2 Need .. 6 - 5

 6.4.3 Features ... 6 - 5

 6.5 Types of NoSQL Databases.. 6 - 5

 6.5.1 Key-Value Store ... 6 - 6

 6.5.2 Document Store ... 6 - 6

 6.5.3 Graph ... 6 - 6

 6.5.4 Wide Column Store .. 6 - 7

 6.6 BASE Properties ... 6 - 8

 6.7 ACID Vs BASE ... 6 - 8

 6.8 Comparative Study of RDBMS and NoSQL .. 6 - 8

 6.9 MongoDB .. 6 - 9

 6.9.1 Data Types ... 6 - 11

 6.9.2 MongoDB Installation .. 6 - 12

(xiii)

 6.9.3 CRUD Operations ... 6 - 19

 6.9.4 Indexing ... 6 - 29

 6.9.5 Aggregation ... 6 - 32

 6.9.6 Map Reduce ... 6 - 34

 6.9.7 Replication ... 6 - 36

 6.9.8 Sharding ... 6 - 37

 Multiple Choice Questions with Answers ... 6 - 38

Unit - VI

Chapter - 7 Advances in Databases (7 - 1) to (7 - 22)

 7.1 Emerging Databases .. 7 - 2

 7.1.1 Active and Deductive Databases ... 7 - 2

 7.1.2 Main Memory Databases .. 7 - 4

 7.1.3 Semantic Databases ... 7 - 4

 7.2 Complex Data Types .. 7 - 5

 7.2.1 Semi-Structured Data .. 7 - 5

 7.2.2 Features of Semi-Structured Data Models .. 7 - 7

 7.3 Nested Data Types .. 7 - 7

 7.3.1 JSON ... 7 - 7

 7.3.2 XML .. 7 - 9

 7.3.3 Difference between XML and HTML .. 7 - 10

 7.3.4 Example of XML ... 7 - 11

 7.3.5 Building Blocks of XML Document ... 7 - 12

 7.3.6 Concept of Namespace .. 7 - 12

 7.3.7 Document Type Definition (DTD) .. 7 - 13

 7.4 Object Orientation .. 7 - 16

 7.4.1 Object-Relational Database System .. 7 - 17

 7.4.2 Table Inheritance ... 7 - 17

 7.4.3 Object-Relational Mapping .. 7 - 18

 7.5 Spatial Data ... 7 - 19

(xiv)

 7.5.1 Geometric Data .. 7 - 19

 7.5.2 Geographic Data .. 7 - 20

 Multiple Choice Questions with Answers ... 7 - 21

 Solved Model Question Papers ... (M - 1) to (M - 4)

(1 - 1)

UNIT - I

1 Introduction to Database
Management Systems and ER Model

Syllabus
Introduction, Purpose of Database Systems, Database-System Applications, View of Data, Database
Languages, Database System Structure, Data Models. Database Design and ER Model : Entity,
Attributes, Relationships, Constraints, Keys, Design Process, Entity-Relationship Model, ER
Diagram, Design Issues, Extended E-R Features, converting ER and EER diagram into tables.

Contents
Part I : Introduction to DBMS

1.1 Introduction

1.2 Purpose of Database Systems

1.3 Advantages of DBMS over File Processing Systems May-19, Marks 5

1.4 Database-System Applications

1.5 View of Data ... May-19, Oct.-19, Marks 5

1.6 Data Abstraction ... Dec.-17, May-19, Marks 5

1.7 Database Languages

1.8 Database System Structure ... May-18, Oct.-18, Dec.-18,19, Marks 5

1.9 Data Models ... Nov.-19, Marks 5

1.10 Data Independence ... Nov.-19, Oct.-19, Aug.-17 Marks 5

1.11 Database Users ... May-19, Nov.-18, Marks 5

Part II : Data Modelling

1.12 Database Design and ER Model May-18, Nov.-17,19,.................. Marks 5

1.13 Constraints

1.14 Keys ... May-19, Oct.-19, Marks 5

1.15 Design Process

1.16 ER Diagram ... Aug.-17, Marks 2

1.17 Convention ... Oct.-19, Marks 2

1.18 Design Issues

1.19 Extended E-R Features

1.20 Converting ER and EER Diagram into Tables Nov.-18, Marks 4

1.21 Examples based on ER Diagram

 Multiple Choice Questions

Database Management Systems 1 - 2 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Part I : Introduction to DBMS

 1.1 Introduction

 Definition : A Database Management System (DBMS) is collection of interrelated
data and various programs that are used to handle the data.

 The primary goal of DBMS is to provide a way to store and retrieve the required
information from the database in convenient and efficient manner.

 For managing the data in the database two important tasks are conducted -

o Define the structure for storage of information.

o Provide mechanism for manipulation of information.

 In addition, the database systems must ensure the safety of information stored.

 1.1.1 Characteristics of Database Approach

Following are the characteristics of database system :
1) Representation of some aspects of real world applications.

2) Systematic management of information.

3) Representing the data by multiple views.

4) Efficient and easy implementation of various operations such as insertion, deletion
and updation.

5) It maintains data for some specific purpose.

6) It represents logical relationship between records and data.

 1.2 Purpose of Database Systems

 Earlier database systems are created in response to manage the commercial data.
These data is typically stored in files. To allow users to manipulate these files
various programs are written for
1) Addition of new data
2) Updating the data
3) Deleting the data.

 As per the addition of new need, separate application programs were required to
write. Thus as the time goes by, the system acquires more files and more application
programs.

 This typical file processing system is supported by conventional operating system.
Thus the file processing system can be described as –

Database Management Systems 1 - 3 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The system that stores the permanent records in files and it needs different
application programs to extract or add the records.

 1.3 Advantages of DBMS over File Processing Systems
 SPPU : May-19, Marks 5

 1.3.1 Advantages of DBMS

Following are the advantages of DBMS :

1) DBMS removes the data redundancy that means there is no duplication of data in
database.

2) DBMS allows to retrieve the desired data in required format.

3) Data can be isolated in separate tables for convenient and efficient use.

4) Data can be accessed efficiently using a simple query language.

5) The data integrity can be maintained. That means – the constraints can be applied
on data and it should be in some specific range.

6) The atomicity of data can be maintained. That means, if some operation is
performed on one particular table of the database, then the change must be reflected
for the entire database.

7) The DBMS allows concurrent access to multiple users by using the synchronization
technique.

8) The security policies can be applied to DBMS to allow the user to access only
desired part of the database system.

 1.3.2 Disadvantages of DBMS

1) Complex design : Database design is complex, difficult and time consuming.

2) Hardware and software cost : Large amount of investment is needed to setup the
required hardware or to repair software failure.

3) Damaged part : If one part of database is corrupted or damaged, then entire
database may get affected.

4) Conversion cost : If the current system is in conventional file system and if we need
to convert it to database systems then large amount of cost is incurred in purchasing
different tools, and adopting different techniques as per the requirement.

5) Training : For designing and maintaining the database systems, the people need to
be trained.

Database Management Systems 1 - 4 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.3.3 File Processing System Vs. DBMS

 Earlier database systems are created in response to manage the commercial data.
These data is typically stored in files. To allow users to manipulate these files,
various programs are written for

1) Addition of new data

2) Updating the data

3) Deleting the data.

 As per the need for addition of new data, separate application programs were
required to write. Thus as the time goes by, the system acquires more files and more
application programs.

 This typical file processing system is supported by conventional operating system.
Thus the file processing system can be described as -

 “The system that stores the permanent records in files and it needs different
application programs to extract or add the records”.

 Before introducing database management system, this file processing system was in
use. However, such a system has many drawbacks. Let us discuss them.

Disadvantages of Traditional File Processing System

The traditional file system has following disadvantages :

1) Data redundancy : Data redundancy means duplication of data at several places.
Since different programmers create different files and these files might have
different structures, there are chances that some information may appear repeatedly
in some or more format at several places.

2) Data inconsistency : Data inconsistency occurs when various copies of same data
may no longer get matched. For example changed address of an employee may be
reflected in one department and may not be available (or old address present) for
other department.

3) Difficulty in accessing data : The conventional file system does not allow to
retrieve the desired data in efficient and convenient manner.

4) Data isolation : As the data is scattered over several files and files may be in
different formats, it becomes difficult to retrieve the desired data from the file for
writing the new application.

5) Integrity problems : Data integrity means data values entered in the database fall
within a specified range and are of specific format. With the use of several files
enforcing such constraint on the data becomes difficult.

Database Management Systems 1 - 5 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

6) Atomicity problems : An atomicity means particular operation must be carried out
entirely or not at all with the database. It is difficult to ensure atomicity in
conventional file processing system.

7) Concurrent access anomalies : For efficient execution, multiple users update data
simultaneously, in such a case data need to be synchronized. As in traditional file
systems, data is distributed over multiple files, one cannot access these files
concurrently.

8) Security problems : Every user is not allowed to access all the data of database
system. Since application program in file system are added in an ad hoc manner,
enforcing such security constraints become difficult.

Database systems offer solutions to all the above mentioned problems.

Difference between Database System and Conventional File System

Sr. No. Database systems Conventional file systems

1. Data redundancy is less. Data redundancy is more.

2. Security is high. Security is very low.

3. Database systems are used when
security constraints are high.

Conventional file systems are used where
there is less demand for security constraints.

4. Database systems define the data in a
structured manner. Also there is well
defined co-relation among the data.

File systems define the data in
un-structured manner. Data is usually in
isolated form.

5. Data inconsistency is less in database
systems.

Data inconsistency is more in file systems.

6. User is unknown to the physical
address of the data used in database
systems.

User locates the physical address of file to
access the data in conventional file systems.

7. We can retrieve the data in any desired
format using database systems.

We cannot retrieve the data in any desired
format using file systems.

8. There is ability to access the data
concurrently using database systems.

There is no ability to concurrently access the
data using conventional file system.

Review Question

1. Define DBMS. Explain advantages of DBMS over file system.
 SPPU : May-19, End Sem, Marks 5

 1.4 Database-System Applications

There are wide range of applications that make use of database systems. Some of the
applications are -

Database Management Systems 1 - 6 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

1) Accounting : Database systems are used in maintaining information employees,
salaries, and payroll taxes.

2) Manufacturing : For management of supply chain and tracking production of items
in factories database systems are maintained.

3) For maintaining customer, product and purchase information the databases are
used.

4) Banking : In banking sector, for customer information, accounts and loan and for
performing banking applications the DBMS is used.

5) For purchase on credit cards and generation of monthly statements database
systems are useful.

6) Universities : The database systems are used in universities for maintaining student
information, course registration, and accounting.

7) Reservation systems : In airline / railway reservation systems, the database is used
to maintain the reservation and schedule information.

8) Telecommunication : In telecommunications for keeping records of the calls made,
generating monthly bills, maintaining balances on prepaid calling cards, and
storing information about communication networks the database systems are used.

 1.5 View of Data SPPU : May-19, Oct.-19, Marks 5

 Database is a collection of interrelated data and set of programs that allow users to
access or modify the data.

 Abstract view of the system is a view in which the system hides certain details of
how the data are stored and maintained.

 The main purpose of database systems is to provide users with abstract view of the
data.

 The view of the system help the user to retrieve data efficiently.

 For simplifying the user interaction with the system there are several levels of
abstraction - these levels are - Physical level, logical level and view level.

Review Question

1. Elaborate the need of database views. Also explain the situations where in the view created are
updateable views. SPPU : May-19, End Sem, Oct.-19, In Sem, Marks 5

Database Management Systems 1 - 7 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.6 Data Abstraction SPPU : Dec.-17, May-19, Marks 5

Definition of data abstraction : Data abstraction means retrieving only the required
amount of information about the system and hiding background details.

There are several levels of abstraction that simplify user interactions with the system.
These are :

1) Physical level :

o This is the lowest level.

o This level describes how the data are stored.

o The database administrators decide how to store data at the physical level.

o This level describes complex low-level data structures.

2) Logical level :

o This is the next higher level, which describes what data are stored in the
database?.

o This level also describes the relationship between the data.

o The logical level thus describes the entire database in terms of a small number of
relatively simple structures.

o The database administrators use a logical level of abstraction for deciding what
information to keep in the database.

3) View level :

o This is the highest level of abstraction that describes only part of the entire
database.

o The view level can provide access to only part of the database.

o This level helps in simplifying the interaction with the system.

o It can provide multiple views of the same system.

o For example - A Clerk at the reservation system can see only part of the
database and access the passenger's required information.

Fig. 1.6.1 shows the relationship between the three levels of abstraction.

Database Management Systems 1 - 8 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 1.6.1 : Levels of data abstraction

For example : Consider following record
 type employee = record
 empID : numeric(10)

 empname : char(20)

 dept_no : numeric(10)

 salary : numeric(8,2)

 end

This code defines a new record employee with four fields. Each field is associated with
field name and its type. There are several other records such as department with fields
dept_no, dept_name, building customer with fields cust_id,cust_name

o At the physical level, the record - customer, employee, department can be
described as block of consecutive storage locations. Many database systems
hide lowest level storage details from database programmer.

o The type definition of the records is decided at the logical level. The
programmer work of the record at this level, similarly database administrators
also work at this level of abstraction.

o There is specific view of the record is allowed at the view level. For instance -
customer can view the name of the employee, or id of the employee but cannot
access employee’s salary.

 Review Question

1. For the database system to be usable, it must retrieve data efficiently. The need of efficiency has
led designers to use complex data structures to represent data in the database. Developers hides
this complexity from the database system users through several levels of abstraction. Explain
those levels of abstraction in detail. SPPU : Dec.-17, May-19, End Sem, Marks 5

Database Management Systems 1 - 9 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.7 Database Languages

There are three types of languages supported by database systems.

Fig. 1.7.1 Types of database languages

(1) DDL

 Data Definition Language (DDL) is a specialized language used to specify a
database schema by a set of definitions.

 It is a language used for creating and modifying the structures of tables, views,
indexes, etc.

 DDL is also used to specify additional properties of data.

 Some of the common commands used in DDL are -CREATE, ALTER, DROP.

 The primary use of CREATE command is to build a new table. Using ALTER
command, the users can add up some additional column and drop existing
columns. Using DROP command, the user can delete table or view.

(2) DML

 DML stands for Data Manipulation Language.

 This language enables users to access or manipulate data as organized by
appropriate data model.

 The types of access are -

o Retrieval of information stored in the database

o Insertion of new information into the database.

o Deletion of information from the database.

o Modification of information stored in database.

 There are two types of DML -

o Procedural DML - Require a user to specify what data are needed and how to
get those data.

o Declarative DML - Require a user to specify what data are needed without
specifying how to get those data.

 Query is a statement used for requesting the retrieval of information. This retrieval
of information using some specific language is called query language.

Database Management Systems 1 - 10 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(3) DCL

 The Data Control Language (DCL) is used to control access to data stored in the
database. This is also called as authorization.

 The typical command used in DCL are GRANT and REVOKE.

o GRANT : This command is used to give access rights or privileges to the
database.

o REVOKE : The revoke command removes user access rights or privileges to the
database objects

 1.8 Database System Structure SPPU : May-18, Oct.-18, Dec.-18,19, Marks 5

 1.8.1 Overall Structure of DBMS

Three Schema Architecture

 Definition : Database schema is a collection of database objects like tables, views,
indexes and so on associated with one particular database username. This username
is called the schema owner.

 For example Student Schema can be owner of STUDENT and MARKS tables. The
Course schema can be the owner of SUBJECT table.

 The goal of three-schema architecture is to separate the user application from the
physical database.

 The architecture of database is divided into three levels based on three types of
schema - internal schema, conceptual schema or external schema.

1. Internal level :

 It contains internal schema.

 This schema represents the physical storage structure of database.

 This schema is maintained by the software and user is not allowed to modify it.

 This level is closest to the physical storage. It typically describes the record layout of
the files and types of files, access paths etc.

2. Conceptual level :

 It contains conceptual schema.

 This schema hides the details of internal level.

 This level is also called as logical level as it contains the constructs used for
designing the database.

Database Management Systems 1 - 11 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 It contains information like table name, their columns, indexes and constraints,
database operations.

 A representational data model is used to describe conceptual schema when a
database system is implemented.

3. External level :

 It contains the external schema or user views.

 At this level, the user will get to see only the data stored in the database. Either they
will see whole data values or any specific records. They will not have any
information about how they are stored in the database.

Fig. 1.8.1 Three schema architecture

 The processes of transforming requests and results between levels are called
mappings.

 In the three schema architecture there are two mappings –

1) External - Conceptual Mapping and

2) Conceptual - Internal Mapping

Database Management Systems 1 - 12 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.8.2 Architecture of DBMS

 The typical structure of typical DBMS is based on relational data model as shown in
Fig. 1.8.2.

Fig. 1.8.2 Architecture of database

Database Management Systems 1 - 13 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Consider the top part of Fig. 1.8.2. It shows application interfaces used by naïve
users, application programs created by application programmers, query tools used
by sophisticated users and administration tools used by database administrator

 The lowest part of the architecture is for disk storage.

 The two important components of database architecture are - Query processor and
storage manager.

Query processor :

 The interactive query processor helps the database system to simplify and facilitate
access to data. It consists of DDL interpreter, DML compiler and query evaluation
engine.

 With the following components of query processor, various functionalities are
performed -

i) DDL interpreter : This is basically a translator which interprets the DDL
statements in data dictionaries.

ii) DML compiler : It translates DML statements query language into an
evaluation plan. This plan consists of the instructions which query evaluation
engine understands.

iii) Query evaluation engine : It executes the low-level instructions generated
by the DML compiler.

 When a user issues a query, the parsed query is presented to a query optimizer,
which uses information about how the data is stored to produce an efficient
execution plan for evaluating the query. An execution plan is a blueprint for
evaluating a query. It is evaluated by query evaluation engine.

Storage Manager :

o Storage manager is the component of database system that provides interface
between the low level data stored in the database and the application programs
and queries submitted to the system.

o The storage manager is responsible for storing, retrieving, and updating data in
the database. The storage manager components include -

i) Authorization and integrity manager : Validates the users who want to
access the data and tests for integrity constraints.

ii) Transaction manager : Ensures that the database remains in consistent
despite of system failures and concurrent transaction execution proceeds
without conflicting.

iii) File manager : Manages allocation of space on disk storage and
representation of the information on disk.

Database Management Systems 1 - 14 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

iv) Buffer manager : Manages the fetching of data from disk storage into main
memory. The buffer manager also decides what data to cache in main
memory. Buffer manager is a crucial part of database system.

o Storage manager implements several data structures such as -

i) Data files : Used for storing database itself.

ii) Data dictionary : Used for storing metadata, particularly schema of database.

iii) Indices : Indices are used to provide fast access to data items present in the
database

Review Questions

1. Draw and explain overall structure of database system.
 SPPU : May-18, Dec.-18, End Sem, Marks 5

2. Different components of database management systems like query processor, storage manager,
transaction manager etc. are functional for processing the query submitted by user. Explain the
functions of each component in view of getting query output.

 SPPU : Oct.-18, In Sem, Marks 5

3. Draw the overall database system structure. Explain storage manager, transaction manager
and query processor in detail.

 SPPU : Dec.-19, End Sem, Marks 5

 1.9 Data Models SPPU : Nov.-19, Marks 5

 Definition : It is a collection of conceptual tools for describing data, relationships
among data, semantics (meaning) of data and constraints.

 Data model is a structure below the database.

 Data model provides a way to describe the design of database at physical, logical
and view level.

 There are various data models used in database systems and these are as follows -

(1) Relational model :

o The relation model consists of collection of tables which stores data and also
represents the relationship among the data.

o The table is also known as relation.

o The table contains one or more columns and each column has unique name.

o Each table contains record of particular type, and each record type defines a
fixed number of fields or attributes.

Database Management Systems 1 - 15 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

o For example – The following figure shows the relational model by showing the
relationship between Student and Result database. For example – Student Ram
lives in city Chennai and his marks are 78. Thus the relationship between these
two databases is maintained by the SeatNo. Column

Seat No Name City SeatNo Marks

101 Ram Chennai 101 78

102 Shyam Pune 102 95

Advantages :

(i) Structural independence : Structural independence is an ability that allows us to
make changes in one database structure without affecting other. The relational
model have structural independence. Hence making required changes in the
database is convenient in relational database model.

(ii) Conceptual simplicity : The relational model allows the designer to simply focus
on logical design and not on physical design. Hence relational models are
conceptually simple to understand.

(iii) Query capability : Using simple query language (such as SQL) user can get
information from the database or designer can manipulate the database structure.

(iv) Easy design, maintenance and usage : The relational models can be designed
logically hence they are easy to maintain and use.

Disadvantages :

i) Relational model requires powerful hardware and large data storage devices.

ii) May lead to slower processing time.

iii) Poorly designed systems lead to poor implementation of database systems.

(2) Entity relationship model :

o As the name suggests the entity relationship model uses collection of basic
objects called entities and relationships.

o The entity is a thing or object in the real world.

o The entity relationship model is widely used in database design.

o For example - Following is a representation of Entity Relationship model in
which the relationship works_for is between entities Employee and
Department.

Database Management Systems 1 - 16 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 1.9.1

Advantages :

i) Simple : It is simple to draw ER diagram when we know entities and
relationships.

ii) Easy to understand : The design of ER diagram is very logical and hence they are
easy to design and understand.

iii) Effective : It is effective communication tool.

iv) Integrated : The ER model can be easily integrated with Relational model.

v) Easy conversion : ER model can be converted easily into other type of models.

Disadvantages :

i) Loss of information : While drawing ER model some information can be hidden
or lost.

ii) Limited relationships : The ER model can represent limited relationships as
compared to other models.

iii) No representation for data manipulation : It is not possible to represent data
manipulation in ER model.

iv) No industry standard : There is no industry standard for notations of ER
diagram.

(3) Object Based Data Model :

o The object oriented languages like C++, Java, C# are becoming the dominant in
software development.

o This led to object based data model.

o The object based data model combines object oriented features with relational
data model.

Advantages :

i) Enriched modelling : The object based data model has capability of modelling
the real world objects.

Database Management Systems 1 - 17 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

ii) Reusability : There are certain features of object oriented design such as
inheritance, polymorphism which help in reusability.

iii) Support for schema evolution : There is a tight coupling between data and
applications, hence there is strong support for schema evolution.

iv) Improved performance : Using object based data model there can be significant
improvement in performance using object based data model.

Disadvantages :

i) Lack of universal data model : There is no universally agreed data model for an
object based data model, and most models lack a theoretical foundation.

ii) Lack of experience : In comparison with relational database management the use
of object based data model is limited. This model is more dependent on the
skilled programmer.

iii) Complex : More functionalities present in object based data model make the
design complex.

(4) Semi-structured data model :

o The semi-structured data model permits the specification of data where
individual data items of same type may have different sets of attributes.

o The Extensible Markup Language (XML) is widely used to represent semi-
structured data model.

Advantages

i) Data is not constrained by fixed schema.
ii) It is flexible.
iii) It is portable.

Disadvantage

i) Queries are less efficient than other types of data model.

(5) Hierarchical Model

 In this model each entity has only one parent
but can have several children. At the top of
hierarchy there is only one node called root.
Refer Fig. 1.9.2.

 This model represents the relationship in 1 :
N types. That means one university can have
multiple courses. One course can have
multiple projects and so on. Fig. 1.9.2 Hierarchical model

Database Management Systems 1 - 18 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Advantage

1. This model groups the data into tables and defines the relationship between the
tables.

Disadvantages

1. For searching any data, we have to start form the root and move downwards and
visit each child node. Thus traversing through each node is required.

2. For addition of some information about child node, sometimes the parent
information need to be modified.

3. It fails to handle many to many relationship (M : N) efficiently.

 It can cause duplication and data redundancy.

(6) Network Model

 This is enhanced version of hierarchical
model. It overcomes the drawback of
hierarchical model. It helps to address
M : N relationship. That means, this model
is not having single parent concept. Any
child in this model can have multiple
parents. Refer Fig. 1.9.3.

 The main difference between network
model and hierarchical model is to allow
many to many relationship.

Advantages

1. Capability to handle more Relationships : Since the network model allows many
to many relationship, it helps in modeling the real life situations.

2. Ease of data access : The data access is easier and flexible than hierarchical model.

3. Data Integrity : In network model every member is associated with some other
member in the model.

4. Conformance to Standards : The network model structure can be designed as per
the standards.

Disadvantages

1. Complex to implement : For all the records the pointers need to be maintained,
hence the database structure becomes complex.

2. Complicated Operations : The simple operations such as insertion, deletion and
modification becomes complex due to adjustment of multiple pointer.

Fig. 1.9.3 Network model

Database Management Systems 1 - 19 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

3. Difficult to change structure : The structural changes are difficult.

 1.10 Data Independence SPPU : Nov.-19, Oct.-19, Aug.-17,Marks 5

 Definition : Data independence is an ability by which one can change the data at
one level without affecting the data at another level. Here level can be physical,
conceptual or external.

 Data independence is one of the important characteristics of database management
system.

 By this property, the structure of the database or the values stored in the database
can be easily modified by without changing the application programs.

 There are two types of data independence :

Fig. 1.10.1 Data independence

1. Physical Independence : This is a kind of data independence which allows the

modification of physical schema without requiring any change to the conceptual

schema. For example - if there is any change in memory size of database server

then it will not affect the logical structure of any data object.

2. Logical Independence : This is a kind of data independence which allows the

modification of conceptual schema without requiring any change to the external

schema. For example - Any change in the table structure such as addition or

deletion of some column does not affect user views.

 By these data independence the time and cost acquired by changes in any one level

can be reduced and abstract view of data can be provided to the user.

Database Management Systems 1 - 20 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Review Question

1. Explain with example what is physical data independence. Also explain its importance.
 SPPU : Aug.-17, In Sem, Marks 5

 1.11 Database Users SPPU : May 19, Nov.-18, Marks 5

There four different types of database system users differentiated by the way they
interact with the system. Different types of user interfaces for different types of users are -

i) Naïve users : This type of users interact with the system with the help of
previously created program(known as application program). Typically a form
interface is used by this type of user to interact with the system. For example -
we may feel up the booking form for booking a ticket on an online system.

ii) Application programmers : These are computer professionals who write
application programs. Normally Rapid Application Development (RAD) tools
are used to quickly design forms and reports.

iii) Sophisticated users : These are the type of users who interact with the system
without writing programs. These users may submit the database query to
retrieve the desired information or tools from data analysis software. Database
analysts fall in this category of database users.

iv) Specialized users : Specialized users are sophisticated users who write
specialized database application that does not fit into the traditional data-
processing framework. Among these applications are computer aided-design
systems, knowledge-base and expert systems etc.

Responsibilities of DBA

Database Administrator (DBA) is a person who have a central control over both data
and programs that access data in DBMS. The functions of DBA are -

i) Schema definition : DBA creates a database Schema using DDL statements.

ii) Schema and physical organization modification : In order to improve the overall
performance of database management system DBA carried out changes in schema
or physical organization.

iii) Granting authorization for data access : Granting authorization for data access
means giving special permissions to the users for accessing the database. This task
is done by DBA so that privacy of database can be maintained.

iv) Maintenance : Maintenance involve different types of tasks such as monitoring jobs
and their performances, taking periodic back-ups, making free space available for
normal operations or upgrading disk space as per the requirements. These all tasks
are carried out by DBA.

Database Management Systems 1 - 21 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 1.11.1 Explain the problems that may arrive if the DBA does not discharge the
responsibilities properly. SPPU : May 19, End Sem, Marks 5

Solution : Following are the problems that may arrive if DBA does not discharge the
responsibilities properly -

1) The database can not perform without file manger interaction. If nothing is stored in
the files then obviously we can not retrieve anything.

2) The consistency in database must operations must be maintained. If it is not, then it
will create major problems. For instance – account balance may go below the
minimum allowed, employees can earn too much overtime and so on.

3) If authorization for the authentic user is not done, then unauthorized users may
access the database or users authorized to access part of the database may be able to
access parts of the database for which they lack authority.

4) Data can be lost permanently.

5) Consistency constraints may be violated despite proper integrity enforcement in
each transaction. For example, incorrect bank balances might be reflected due to
simultaneous withdrawals and deposits, and so on.

Part II: Data Modelling

 1.12 Database Design and ER Model SPPU : May-18, Nov.-17,19, Marks 5

 Data Modelling in database management system is based on Entity Relationship
modelling(ER Model)

 Entity Relational model is a model for identifying entities to be represented in the
database and representation of how those entities are related.

 ER data model represents the overall logical structure of database.

 The E-R model is very useful in mapping the meanings and interactions of real-
world entities onto a conceptual schema or database.

 The ER model consists of three basic concepts –

 1. Entities 2. Relationships 3. Attributes

 1.12.1 Entity and Entity Sets

 Entity : An entity is an object that exists and is distinguishable from other objects.
For example - Student named “Poonam” is an entity and can be identified by her
name. The entity can be concrete or abstract. The concrete entity can be - Person,

Database Management Systems 1 - 22 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Book, Bank. The abstract entity can be like - holiday, concept entity is represented as
a box.

 Entity set : The entity set is a set of entities of the same types. For example - All
students studying in class X of the School. The entity set need not be disjoint. Each
entity in entity set have the same set of attributes and the set of attributes will
distinguish it from other entity sets. No other entity set will have exactly the same
set of attributes.

 1.12.2 Relationships

 Relationship: Relationship is an association among two or more entities.

 Relationship Set: The relationship set is a collection of similar relationships. For
example - Following Fig. 1.12.1 shows the relationship works_for for the two
entities Employee and Departments.

Fig. 1.12.1 : Relation set

 The association between entity sets is called as participation. that is, the entity sets
E1, E2, . . . , En participate in relationship set R.

 The function that an entity plays in a relationship is called that entity’s role.

 1.12.3 Attributes

 Attributes define the properties of a data object of entity. For example: if student is
an entity, his ID, name, address, date of birth, class are its attributes. The attributes
help in determining the unique entity. Refer Fig. 1.12.2 for Student entity set with
attributes - ID, name, address. Note that entity is shown by rectangular box and
attributes are shown in oval. The primary key is underlined.

Database Management Systems 1 - 23 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 1.12.2 : Student entity set with attributes

 1.12.3.1 Types of Attributes

Following are the types of attributes -

1) Simple and Composite Attributes :

1) Simple attributes are attributes that are drawn from the atomic value domains

 For example - Name = {Parth} ; Age = {23}

2) Composite attributes: Attributes that consist of a hierarchy of attributes

 For example – Address may consists of “Number”, “Street” and “Suburb”

 Hence, Address = {59 + ‘JM Road’ + ‘ShivajiNagar’}

2) Single valued and multivalued :

 There are some attributes that can be represented using a single value. For example
- StudentID attribute for a Student is specific only one studentID.

 Multivalued attributes : Attributes that have a set of values for each entity. It is
represented by concentric ovals

 For example - Degrees of a person: ‘ BSc’ , ‘MTech’, ‘PhD’

Database Management Systems 1 - 24 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

3) Derived attribute :

Derived attributes are the attributes that contain values that are calculated from other
attributes. To represent derived attribute there is dotted ellipse inside the solid ellipse.
For example – Age can be derived from attribute DateOfBirth. In this situation,
DateOfBirth might be called Stored Attribute.

Fig. 1.12.3

 1.13 Constraints

 Relationship types have certain rules that limit the possible combination of entities
that can take part in relationship. These rules or restrictions are called structural
constraints.

 The common type of structural constraint is represented by the cardinality ratio.

 The cardinality ratio for a binary relationship specifies the maximum number of
relationship instances that an entity can participate in.

 1.13.1 Types of Cardinality

Mapping Cardinality represents the number of entities to which another entity can be
associated via a relationship set.

The mapping cardinalities are used in representing the binary relationship sets.

Various types of mapping cardinalities are -

Database Management Systems 1 - 25 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

1. One to One : An entity A is associated with at least one entity on B and an entity B
is associated with at one entity on A. This can be represented as

2. One to Many : An entity in A is associated with any number of entities in B. An
entity in B, however, can be associated with at most one entity in A.

3. Many to One : An entity in A is associated with at most one entity in B. An entity in
B, however, can be associated with any number of entities in A.

4. Many to many : An entity in A is associated with any number (zero or more) of
entities in B, and an entity in B is associated with any number (zero or more) of
entities in A.

Database Management Systems 1 - 26 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.14 Keys SPPU : May-19, Oct.-19, Marks 5

 Keys are used to identify entities uniquely from the given entity set.

 A key can be a an attribute or a set of attributes that help us to identify the entity
uniquely.

 Keys also help to identify relationships uniquely, and thus distinguish relationships
from each other.

 The primary key of an entity set allows us to distinguish among the various entities
of the set.

 For example - If a Student table contains the information about various students as
given below -

RollNo Name City Course

101 Ram Pune Computer

102 Sita Pune Electronics

103 Laxman Chennai Mechanical

In above table, RollNo is a primary key because, it uniquely identifies the student
record.

Review Question

1. Distinguish between super key, candidate key and primary key.
 SPPU : May-19, End Sem, Oct.-19, In Sem, Marks 5

 1.15 Design Process

Following are the six steps of database design process. The ER model is most relevant
to first three steps

Database Management Systems 1 - 27 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Fig. 1.15.1 : Database design process

Step 1 : Requirement analysis :

 In this step, it is necessary to understand what data need to be stored in the
database, what applications must be built, what are all those operations that are
frequently used by the system.

 The requirement analysis is an informal process and it requires proper
communication with user groups.

 There are several methods for organizing and presenting information gathered in
this step.

 Some automated tools can also be used for this purpose.

Step 2 : Conceptual database design :

 This is a steps in which E-R Model i.e. Entity Relationship model is built.

 E-R model is a high level data model used in database design.

 The goal of this design is to create a simple description of data that matches with
the requirements of users.

Step 3 : Logical database design :

 This is a step in which ER model in converted to relational database schema,
sometimes called as the logical schema in the relational data model.

Step 4 : Schema refinement :

 In this step, relational database schema is analyzed to identify the potential
problems and to refine it.

 The schema refinement can be done with the help of normalizing and restructuring
the relations.

Step 5 : Physical database design :

 In this step, the design of database is refined further.

Database Management Systems 1 - 28 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The tasks that are performed in this step are - building indexes on tables and
clustering tables, redesigning some parts of schema obtained from earlier design
steps.

Step 6 : Application and security design :

 Using design methodologies like UML(Unified Modeling Language) the design of
the database can be accomplished.

 The role of each entity in every process must be reflected in the application task.

 For each role, there must be the provision for accessing the some part of database
and prohibition of access to some other part of database.

 Thus some access rules must be enforced on the application(which is accessing the
database) to protect the security features.

 1.16 ER Diagram SPPU : Aug.-17, Marks 2

 Entity Relational model is a model for identifying entities tobe represented in the
database and representation of how those entities are related.

 The ER data model specifies enterprise schema that represents the overall logical
structure of a database graphically.

 E-R diagrams are used to model real-world objects like a person, a car, a company
and the relation between these real-world objects.

Features of ER model

i) E-R diagrams are used to represent E-R model in a database, which makes them
easy to be converted into relations (tables).

ii) E-R diagrams provide the purpose of real-world modeling of objects which makes
them intently useful.

iii) E-R diagrams require no technical knowledge and no hardware support.

iv) These diagrams are very easy to understand and easy to create even by a naive
user.

v) It gives a standard solution of visualizing the data logically.

Various Components used in ER Model are -

Component Symbol Example

Entity : Any real-world object can be
represented as an entity about which data
can be stored in a database. All the real
world objects like a book, an organization, a

Database Management Systems 1 - 29 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

product, a car, a person are the examples of
an entity.

Relationship : Rhombus is used to setup
relationships between two or more entities.

Attribute : Each entity has a set of
properties. These properties of each entity
are termed as attributes. For example, a car
entity would be described by attributes
such as price, registration number, model
number, color etc

Derived attribute : Derived attributes are
those which are derived based on other
attributes, for example, age can be derived
from date of birth.

To represent a derived attribute, another
dotted ellipse is created.

Multivalued attribute : An attribute that
can hold multiple values is known as
multivalued attribute. We represent it with
double ellipses in an E-R Diagram. E.g. A
person can have more than one phone
numbers so the phone number attribute is
multivalued.

Total participation : Each entity is involved
in the relationship. Total participation is
represented by double lines.

 1.17 Conventions SPPU : Oct.-19, Marks 2

 1.17.1 Mapping Cardinality Representation

There are four types of relationships that are considered for key constraints.

i) One to one relation : When entity A is associated with at the most one entity B then
it shares one to one relation. For example - There is one project manager who
manages only one project.

Database Management Systems 1 - 30 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

ii) One to many : When entity A is associated with more than one entities at a time
then there is one to many relation. For example - One customer places order at a
time.

iii) Many to one : When more than one entities are associated with only one entity then
there is is many to one relation. For example - Many student take a
ComputerSciCourse.

Alternate representation can be

iv) Many to many : When more than one entities are associated with more than one
entities. For example -Many teachers can teach many students.

Alternate representation can be

 1.17.2 Ternary Relationship

The relationship in which three entities are involved is called ternary relationship. For
example -

Database Management Systems 1 - 31 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.17.3 Weak Entity Set

 A weak entity is an entity that cannot be uniquely identified by its attributes alone.
The entity set which does not have sufficient attributes to form a primary key is
called as weak entity set.

Fig. 1.17.1 : Weak entity set

 Strong Entity Set

 The entity set that has primary key is called as strong entity set

Weak entity rules

 A weak entity set has one or more many-one relationships to other (supporting)
entity sets.

 The key for a weak entity set is its own underlined attributes and the keys for the
supporting entity sets. For example - player-number and team-name is a key for
Players.

Database Management Systems 1 - 32 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Difference between Strong and Weak Entity Set

Sr. No. Strong entity set Weak entity set

1 It has its own primary key. It does not have sufficient attribute to
form a primary key on its own.

2. It is represented by rectangle It is represented by double rectangle.

3. It represents the primary key which
is underlined.

It represents the partial key or
discriminator which is represented by
dashed underline.

4. The member of strong entity set is
called as dominant entity set

The member of weak entity set is called
subordinate entity set.

5. The relationship between two
strong entity sets is represented by
diamond symbol.

The relationship between strong entity
set and weak entity set is represented
by double diamond symbol.

6. The primary key is one of the
attributes which uniquely identifies
its member.

The primary key of weak entity set is a
combination of partial key and primary
key of the strong entity set.

 1.18 Design Issues

 The ER diagram can be designed in several different ways for representing the same
system application. Different representations may not always be exactly equivalent.

(1) Use of Entity Vs. Attribute

 Use of entity or attribute in the ER diagram depends upon the real-world
application. For example - Following is an example, in which phone_number is
represented as attribute. But we can represent phone_number as entity instead of
attribute. The advantage of such representation is that it is possible to maintain the
multiple phone numbers for a customer. Moreover, we can maintain some extra
information such as customer’s location if the phone_number is represented as
entity instead of attribute.

Fig. 1.18.1 : Representation of Phone_number as attribute

Database Management Systems 1 - 33 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 1.18.2 : Representation of Phone_number as entity

(2) Use of Entity Set Vs. Relationship Sets

 Representing a particular as entity set or relationship is a common problem, many
times designer face. For example as shown in the following figure , an – Employee
works for a Department and an Employee works for a project, These two
relationships can be represented by making Registration as an entity set and
representing works_for relationship set for both department and project.

 (3) Binary Vs. n-ary Relationship Sets

Generally, the relationships described in the databases are binary relationships.
However, non-binary relationships can be represented by several binary relationships.

We can specify some mapping cardinalities on relationships with degree > 2

For example –

Database Management Systems 1 - 34 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(4) Placing Relationship Attributes

 The relationship set can have descriptive attribute. For example – in the following
fig. the relationship depositor has descriptive attribute named access_date. The
decision of placing the specified attribute as a relationship or entity attribute should
possess the characteristics of the real world enterprise that is being modelled.

 1.19 Extended E-R Features

 1.19.1 Specialization and Generalization

 Some entities have relationships that form hierarchies. For instance, Employee can
be an hourly employee or contracted employee.

 In this relationship hierarchies, some entities can act as superclass and some other
entities can act as subclass.

 Superclass : An entity type that represents a general concept at a high level, is
called superclass.

 Subclass : An entity type that represents a specific concept at lower levels, is called
subclass.

 The subclass is said to inherit from superclass. When a subclass inherits from one or
more superclasses, it inherits all their attributes. In addition to the inherited
attributes, a subclass can also define its own specific attributes.

 The process of making subclasses from a general concept is called specialization.
This is top-down process. In this process, the sub-groups are identified within an
entity set which have attributes that are not shared by all entities.

 The process of making superclass from subclasses is called generalization. This is a
bottom up process. In this process multiple sets are synthesized into high level
entities.

 The symbol used for specialization/ Generalization is

Database Management Systems 1 - 35 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 For example – There can be two subclass entities namely Hourly_Emps and
Contract_Emps which are subclasses of Empoyee class. We might have attributes
hours_worked and hourly_wage defined for Hourly_Emps and an attribute
contractid defined for ContractEmps.

Therefore, the attributes defined for an Hourly_Emps entity are the attributes for
Employees plus Hourly_Emps. We say that the attributes for the entity set
Employees are inherited by the entity set Hourly_Emps and that Hourly-Emps ISA
(read is a) Employees. It can be represented by following Fig. 1.19.1.

Fig. 1.19.1 Example of Generalization and Specialization

 1.19.2 Constraints on Specialization / Generalization

There are four types of constraints on specialization/generalization relationship. These
are -

1) Membership constraints : This is a kind of constraints that involves determining
which entities can be members of a given lower-level entity. There are two types of
membership constraints -

i) Condition defined : In condition-defined lower-level entity sets,membership
is evaluated on the basis of whether or not an entity satisfies an explicit
condition or predicate. For example - Consider the high-level entity Set
Employee that has attribute Employee_type. All Employee entities are
evaluated on defining Employee_type attribute. All entities that satisfy the
condition student type = “ContractEmployee” are included in Contracted
Employee. Since all the lower-level entities are evaluated on the basis of the
same attribute this type of generalization is said to be attribute-defined.

ii) User defined : This is kind of entity set that in which the membership is
manually defined.

2) Disjoint constraints : The disjoint constraint only applies when a superclass has

Database Management Systems 1 - 36 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

more than one subclass. If the subclasses are disjoint, then an entity occurrence can
be a member of only one of the subclasses. For entity Student has either
Postgraduate_Student entity or Undergraduate_Student

3) Overlapping : When some entity can be a member of more than one subclasses. For
example - Person can be both a Student or a Staff. The And can be used to represent
this constraint.

4) Completeness : It specifies whether or not an entity in the higher-level entity set
must belong to at least one of the lower-level entity sets within the
generalization/specialization. This constraint may be one of the following -

i) Total generalization or specialization : Each higher-level entity must belong
to a lower-level entity set. For example - Account in the bank must either
Savings account or Current Account. The mandatory can be used to
represent this constraint.

ii) Partial generalization or specialization : Some higher-level entities may not
belong to any lower-level entity set.

Database Management Systems 1 - 37 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.19.3 Aggregation

A feature of the entity relationship model that allows a relationship set to participate
in another relationship set. This is indicated on an ER diagram by drawing a dashed box
around the aggregation.

For example - We treat the relationship set work and the entity sets employee and
project as a higher-level entity set called work.

Fig. 1.19.2 : ER model with aggregation

 1.20 Converting ER and EER Diagram into Tables SPPU : Nov.-18, Marks 4

In this section we will discuss how to map various ER model constructs to Relational
Model construct.

 1.20.1 Mapping of Entity Set to Relationship

 An entity set is mapped to a relation in a straightforward way.

 Each attribute of entity set becomes an attribute of the table.

 The primary key attribute of entity set becomes an entity of the table.

Database Management Systems 1 - 38 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 For example - Consider following ER diagram.

The converted employee table is as follows -

EmpID EName Salary

201 Poonam 30000

202 Ashwini 35000

203 Sharda 40000

The SQL statement captures the information for above ER diageam as follows -

CREATE TABLE Employee(EmpID CHAR(11),

 EName CHAR(30),
 Salary INTEGER,
PRIMARY KEY(EmpID))

 1.20.2 Mapping Relationship Sets(without Constraints) to Tables

 Create a table for the relationship set.

 Add all primary keys of the participating entity sets as fields of the table.

 Add a field for each attribute of the relationship.

 Declare a primary key using all key fields from the entity sets.

 Declare foreign key constraints for all these fields from the entity sets.
For example - Consider following ER model

Database Management Systems 1 - 39 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The SQL statement captures the information for relationship present in above ER
diagram as follows -

CREATE TABLE Works_In (EmpID CHAR(11),

 DeptID CHAR(11),
 EName CHAR(30),
 Salary INTEGER,

 DeptName CHAR(20),
 Building CHAR(10),
 PRIMARY KEY(EmpID,DeptID),

 FOREIGN KEY (EmpID) REFERENCES Employee,
 FOREIGN KEY (DeptID) REFERENCES Department
)

 1.20.3 Mapping Relationship Sets(With Constraints) to Tables

 If a relationship set involves n entity sets and some m of them are linked via arrows
in the ER diagram, the key for anyone of these m entity sets constitutes a key for
the relation to which the relationship set is mapped.

 Hence we have m candidate keys, and one of these should be designated as the
primary key.

 There are two approaches used to convert a relationship sets with key constraints
into table.

 Approach 1 :

o By this approach the relationship associated with more than one entities is
separately represented using a table. For example - Consider following ER
diagram. Each Dept has at most one manager, according to the key constraint
on Manages.

Database Management Systems 1 - 40 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Here the constraint is each department has at the most one manager to manage it.
Hence no two tuples can have same DeptID. Hence there can be a separate table named
Manages with DeptID as Primary Key. The table can be defined using following SQL
statement

CREATE TABLE Manages(EmpID CHAR(11),
 DeptID INTEGER,

 Since DATE,
 PRIMARY KEY(DeptID),
 FOREIGN KEY (EmpID) REFERENCES Employees,

 FOREIGN KEY (DeptID) REFERENCES Departments)

 Approach 2 :

o In this approach , it is preferred to translate a relationship set with key
constraints.

o It is a superior approach because, it avoids creating a distinct table for the
relationship set.

o The idea is to include the information about the relationship set in the table
corresponding to the entity set with the key, taking advantage of the key
constraint.

o This approach eliminates the need for a separate Manages relation, and queries
asking for a department's manager can be answered without combining
information from two relations.

o The only drawback to this approach is that space could be wasted if several
departments have no managers.

o The following SQL statement, defining a Dep_Mgr relation that captures the
information in both Departments and Manages, illustrates the second approach
to translating relationship sets with key constraints :

CREATE TABLE Dep_Mgr (DeptID INTEGER,
 DName CHAR(20),

 Budget REAL,
 EmpID CHAR (11),
 since DATE,

 PRIMARY KEY (DeptID),
 FOREIGN KEY (EmpID) REFERENCES Employees)

Database Management Systems 1 - 41 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.20.4 Mapping Weak Entity Sets to Relational Mapping

A weak entity can be identified uniquely only by considering the primary key of
another (owner) entity. Following steps are used for mapping Weka Entity Set to
Relational Mapping

 Create a table for the weak entity set.

 Make each attribute of the weak entity set a field of the table.

 Add fields for the primary key attributes of the identifying owner.

 Declare a foreign key constraint on these identifying owner fields.

 Instruct the system to automatically delete any tuples in the table for which there
are no owners

For example - Consider following ER model

Following SQL Statement illustrates this mapping

CREATE TABLE Department(DeptID CHAR(11),

 DeptName CHAR(20),
 Bldg_No CHAR(5),
 PRIMARY KEY (DeptID,Bldg_No),

 FOREIGN KEY(Bldg_No) References Buildings on delete cascade
)

 1.20.5 Mapping of Specialization / Generalization(EER Construct)

 to Relational Mapping

The specialialization/Generalization relationship(Enhanced ER Construct) can be
mapped to database tables(relations) using three methods. To demonstrate the methods,
we will take the – InventoryItem, Book, DVD

Database Management Systems 1 - 42 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Method 1 : All the entities in the relationship are mapped to individual tables

 InventoryItem(ID , Price)
 Book(ID,Publisher)
 DVD(ID, Manufacturer)

Method 2 : Only subclasses are mapped to tables. The attributes in the superclass are
duplicated in all subclasses. For example -

 Book(ID, Price,Publisher)
 DVD(ID, Price,Manufacturer)

Method 3 : Only the superclass is mapped to a table. The attributes in the subclasses are
taken to the superclass. For example -

 InventoryItem(ID , Price,Publisher,Manufacturer)

This method will introduce null values. When we insert a Book record in the table, the
Manufacturer column value will be null. In the same way, when we insert a DVD record
in the table, the Publisher value will be null.

Review Question

1. Writing short note on – Mapping ISA relationship of E-R diagram to tables
 SPPU : Nov.-18, End Sem, Marks 4

Database Management Systems 1 - 43 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.21 Examples based on ER Diagram

 Example 1.21.1 Draw an ER diagram for banking system(Home-Loan Application)

Solution :

Database Management Systems 1 - 44 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 1.21.2 Consider the relation schema given in following Figure. Design and draw an

ER diagram that capture the information of this schema.

Employee(empno,name,office,age)

Books(isbn,title,authors,publisher)

Loan(empno,isbn,date)

Solution :

 Example 1.21.3 A car rental company maintains a database for all vehicles in its current

fleet. For all vehicles, it includes the vehicle identification number license number,

manufacturer, model, date of purchase and color. Special data are included for certain types

of vehicles.

Trucks : Cargo capacity

 Sports cars : horsepower, renter age requirement

Vans : number of passengers

Off-road vehicles : ground clearance, drivetrain (four-or two-wheel drive)

Construct an ER model for the car rental company database.

Database Management Systems 1 - 45 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

 Example 1.21.4 Draw E-R diagram for the "Restaurant Menu Ordering System", which will

facilitate the food items ordering and services within a restaurant. The entire restaurant

scenario is detailed as follows. The customer is able to view the food items menu, call the

waiter, place orders and obtain the final bill through the computer kept in their table. The

Waiters through their wireless tablet PC are able to initialize a table for customers, control

the table functions to assist customers, orders, send orders to food preparation staff (chef)

and finalize the customer's bill. The Food preparation staffs (chefs), with their touch-

display interfaces to the system, are able to view orders sent to the kitchen by waiters.

During preparation they are able to let the waiter know the status of each item, and can

send notifications when items are completed. The system should have full accountability

and logging facilities, and should support supervisor actions to account for exceptional

circumstances, such as a meal being refunded or walked out on.

Database Management Systems 1 - 46 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

Database Management Systems 1 - 47 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 1.21.5 What is aggregation in ER model ? Develop an ER diagram using

aggregation that captures following information : Employees work for projects. An employee

working for particular project uses various machinery. Assume necessary attributes. State

any assumptions you make. Also discuss about the ER diagram you have designed.

Solution : Aggregation : Refer section 1.19.3.

ER Diagram : The ER diagram for above described scenario can be drawn as follows -

The above ER model contains the redundant information, because every Employee,
Project, Machinery combination in works_on relationship is also considered in manages
relationship. To avoid this redundancy problem we can make use of aggregation
relationship in ER diagram as follows -

Database Management Systems 1 - 48 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

We can then create a binary relationship manages for between Manager and
(Employee, Project, Machinery).

Example 1.21.6 Draw an ER diagram of Airline reservation system taking into account at least

five entities. Indicate all keys, constraints and assumptions that are made

Solution :

Database Management Systems 1 - 49 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

A LEG is nonstop portion of flight. The LEG_INSTANCE is a particular occurrence of

a LEG on particular date.

 Example 1.21.7 Draw an ER diagram of movie database. Assume your own entities (minimum 4)

attributes and relationships.

Solution :

 Example 1.21.8 Draw an ER diagram to represent the Election Information system based on the

following description.

In Indian national election, a state is divided into a number of constituencies depending

upon the population of the state. Several candidates contest elections in each constituency.

Record the number of votes obtained by each candidate. The system also maintains the voter

list and a voter normally belongs to a particular constituency.

 Note that the party details must also be taken care in the design.

Database Management Systems 1 - 50 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

 Fig. 1.21.1 Election information system

 Example 1.21.9 Construct an E R diagram for library management system

Database Management Systems 1 - 51 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

 Example 1.21.10 A database is to be constructed to keep track of the teams and games of a sport

league. A team has number of players not all of whom participate in each game. It is desired

to keep track of the players participating in each game for each team, the positions they

played in that game, and the result of the game. Design an ER diagram completely with

attributes, keys and constraints for the above description.

Database Management Systems 1 - 52 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

 Example 1.21.11 Draw an ER diagram for a small marketing company database. Assume

suitable data.

Solution :

Database Management Systems 1 - 53 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 1.21.12 A university database contains information about professors (identified by

social security number, or SSN) and courses (identified by courseid). Professors teach

courses; each of the following situations concerns the Teaches relationship set. For each

situation, draw an ER diagram -

1. Professors can teach the same course in several semesters, and each ordering must be

recorded.

2. Professors can teach the same course in several semesters, and only the most recent such

ordering needs to be recorded (Assume this condition applies in all subsequent questions).

3. Every professor must teach some course.

4. Every professor teaches exactly one course.

5. Every professor teaches exactly one course and every course must be taught by some

professor.

Solution :

1.

2.

3.

Database Management Systems 1 - 54 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

4.

5.

 Example 1.21.13 Construct an ER diagram of customer account relationship. Customer entity

with attributes of S#, Customer name, street, customer city, and account entity with

attributes account no, and balance. The customer account relationship with date attributes.

Solution :

 Example 1.21.14 A university registrar’s office maintains data about the following entities :

(1) courses, including number, title, credits, syllabus, and prerequisites;

(2) course offerings, including course number, year, semester, section number,

 instructor(s), timings, and classroom;

(3) students, including student-id, name, and program; and

(4) instructors, including identification number, name, department, and title.

Database Management Systems 1 - 55 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Further, the enrollment of students in courses and grades awarded to students in each

course they are enrolled for must be appropriately modeled.

(i) Construct an E-R diagram for the registrar’s office. Document all assumptions that

 you make about the mapping constraints.
 SPPU : Aug.-17, May-19, End Sem, Marks 10

OR

Consider a database used to record the marks that students get in different exams of

different course offerings.

Construct an E - R diagram that models exams as entities, uses a ternary relationship, for

the above database.
 SPPU : Dec.-17, End Sem, Marks 5

Solution :

(i)

Database Management Systems 1 - 56 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 1.21.15 Assuming you as a part of designer and development team, propose E-R
model using E-R diagram for the following data requirements of banking system. Also
convert and represent E-R model into tables characteristics of banking requirements are given
below.
The bank is organized into branches. Each branch is located in a particular city.
Bank customers are identified by customer_id.
Bank employees are identified by emp-id
The bank offers two types of accounts saving and current. Accounts can be held by more than
one customer and a customer can have more than one account.
A loan originates at a particular branch and can be held by one or more customers.
Additional requirement can be assumed if required, but assumptions should be clearly
mentioned. SPPU : Oct.-18, In Sem, Marks 10

Solution :

Database Management Systems 1 - 57 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 1.21.16 Ramesh's family owns and operates a 100-acre farm for several generations.

Since the farm business is growing, Ramesh is thinking to build a database that would make

easier the management of the activities in the farm. He is considering the following

requirements for the database :

i) For each livestock classification group (for example, cow, horse etc.), Ramesh keeps track

of the following: identification number, classification, total number of livestock per

classification group (for example, number of cows, number of horses etc.)

ii) For each crop the following information is recorded Crop identification number and

classification.

iii) Ramesh has recorded the yield of each crop classification group during the last ten years.

The records consist of the year, yield, sales, price of the crop and the amount of money

earned.

iv) Ramesh has recorded the yield of each livestock classification group during the last ten

years. The records consist of the following historical data : the year, (historical) selling price

per head, number of livestock in the end of the year, number of livestock sold during one-year

period, and the total amount of money earned.

Draw an E-R diagram for this application. Specify the key attribute of each entity type.
 SPPU : Dec.-18, End Sem, Marks 5

Solution :

 Example 1.21.17 Assuming you as a part of design and development of team of an organization,

propose E-R model using E-R diagram for the following data requirements. Also convert and

represent E-R model into tables :

Company organized into DEPARTMENT. Each department has unique name and a

particular employee who manages the department. Start date for the manager is recorded.

Department may have several locations.

A department control a number of PROJECT. Projects have a unique name, number and a

Database Management Systems 1 - 58 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

single location.

Company's EMPLOYEE name, ssno, address, salary, sex and birth date are recorded. An

employee is assigned to one department, but may work for several projects (not necessarily

controlled by her dept).

Number of hours/week an employee works on each project is recorded.

Employee's DEPENDENT are tracked for health insurance purposes (dependent name,

birthdate, relationship to employee).
 SPPU : May-19, End Sem, Oct.-19, In Sem, Marks 10

Solution :

Database Management Systems 1 - 59 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The above ER diagram is converted into tables as

EMPLOYEE

ssn Fname Lname Minit Bdate Address sex salary

DEPARTMENT

DNum DName Mng_ssn Mng_start_date

DEPT_LOCATIONS

Dept_num Dept_location

PROJECT

Proj_Name Proj_Num Proj_Location DNo

WORKS_ON

Emp_SSN Proj_No Hours

DEPENDENT

Emp_SSN Depend_Name Sex Bdate Relationship

 Example 1.21.18 Assume we have the following application that models soccer teams, the games

they play and the players in each team. In the design, we want to capture the following :

We have a set of teams, each team has an ID (unique identifier), name, main stadium and to

which city this team belongs.

Each team has many players and each player belongs to one team. Each player has a number

(unique identifier), name, DoB, start year and shirt number that he uses.

Teams play matches, in each match there is a host team and a guest team. The match takes

places in the stadium of the host team.
For each match we need to keep track of the following :
The date on which the game is played.

 The final result of the match.

The players participated in the match. For each player, how many goals he scored, whether

or not he took yellow card and whether or not he took red card.
During the match, one player may substitutee another player. We want to capture this

substitution and the time at which it took place.
Each match has exactly three referees. For each referee we have an ID (unique identifier),

name, DoB, years of experience. One referee is the main referee and the other two are
assignment referee.

Database Management Systems 1 - 60 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Design an ER diagram to capture the above requirements. State any assumptions you have

that effects your design.
 SPPU : Dec.-19, End Sem, Marks 5

Solution :

 Example 1.21.19 Translate the following entity-relationship diagram to relational tables.
 SPPU : Dec.-19, End Sem, Marks 5

Database Management Systems 1 - 61 Introduction to Database Management Systems and ER Model

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

Student

StudentNum

Course

CourseNum

Account

UserId

EnrolledIn

StudentNum CourseNum

CourseAccount

UserId StudentNum CourseNum ExpirationDate

 Example 1.21.20 A weak entity set can always be made into strong entity set by adding to its

attributes; the primary key attributes of its identifying entity set. Outline what sort of

redundancy will result if we do so while converting into tables.

 SPPU : Aug.-17, Oct.-18, In Sem, Marks 5

Solution : By adding appropriate primary key to a weak entity set can result into the
strong entity set.

If we add primary key attributes to the weak entity set, they will be present in both the
entity set and the relationship set and both needs to be the same. Hence there will be
redundancy.

Unit - I
Multiple Choice Questions

Q.1 A DBMS provides users with the conceptual representation of _______.

 a register b data

 c logical view d physical view

Q.2 DBMS helps to achieve _______.

 a data Independence b centralized Control of Data

 c neither a nor b d both a and b

Q.3 In view of total database content is _______.

 a conceptual view b internal view

 c external view d physical view

Q.4 The main purpose of DBMS is to provide _____ view of data to user.

 a completer b abstract

 c partial d none of these

Q.5 ___ means to hide certain details of how data is stored.

 a Data Integrity b Data independence

 c Data abstraction d Data separation

Q.6 How many levels of data abstraction are there ?

 a One b Two

 c Three d Four

Q.7 A _____view of data expresses the way a user thinks about data _______.

 a logical view b physical view

 c both d none

Q.8 A physical view of data refers to the way data is handled at a________ its storage and

retrieval.

 a high level b low level

 c medium level d all of these

Q.9 Architecture of the database can be viewed as _______.

 a two levels b three levels

 c four levels d one level

(1 - 62)

Database Management Systems 1 - 63 Unit - I

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.10 In the architecture of a database system external level is the _______.

 a physical level b logical level

 c conceptual level d view level

Q.11 In hierarchical model records are organized as _______.

 a lists b links

 c tree d graph

Q.12 There are ____ levels of data independence.

 a one b two

 c three d four

Q.13 The ability to modify the schema of database in one level without affecting the schema

definition in higher level is called as _______.

 a data isolation b data abstraction

 c data hiding d data independence

Q.14 Which of the following is record based on logical model ?

 a Network Model b Object Oriented Model

 c E-R Model d None of these

Q.15 The DDL is used to specify the_____.

 a conceptual schemas b internal schemas

 c both d none

Q.16 DCL stands for ______.

 a Data Control Language b Data Console Language

 c Data Console Level d Data Control Level

Q.17 Which of the following is / are the DDL statements ?

 a Create b Drop

 c Alter d All of the above

Q.18 Which are the three levels of abstraction ?

 a Physical b Logical

 c External d All of these

Q.19 The statement in SQL which allows to change the definition of a table is ___________.

 a create b alter

 c select d update

Database Management Systems 1 - 64 Unit - I

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.20 Which of the following is NOT a basic element of all versions of the E - R model ?

 a Entities b Relationships

 c Attributes d Primary key

Q.21 Data independence means __________.

 a data is defined separately and not included in programs

 b programs are not dependent on the physical attributes of data.

 c programs are not dependent on the logical attributes of data

 d both (b) and (c)

Q.22 E-R model uses this symbol to represent weak entity set _________.

 a dotted rectangle b diamond

 c doubly outlined rectangle d none of these

Q.23 _____________ express the number of entities to which another entity can be associated

via a relationship set.

 a Mapping cardinality b Relational cardinality

 c Participation constraints d None of the mentioned

Q.24 In E-R diagram derived attribute is represented by _______.

 a rectangle b circle

 c dashed Ellipse d diamond

Q.25 DBA stands for ______.

 a Data Building Administrator b Database Access

 c Database Authentication d Database Administrator

Q.26 _____ represents the number of entities to which another entity can be associated

 a Degree b Cardinality

 c Modality d None of these

Q.27 Data Model is collection of conceptual tools for describing _______.

 a Data b Schema

 c constraints d All of the above

Q.28 Which of the following is example of Object based logical model ?

 a Relational Model b Hierarchical Model

 c Network Model d Entity Relationship Model

Q.29 Entity Relationship model consists of collection of basic objects called _________ and

relationship among these objects.

Database Management Systems 1 - 65 Unit - I

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 a functions b models

 c entity d all of these

 Q.30 ER model was introduced by _____.

 a E.F. Codd b P.P. Chen

 c Bjarne Stroustrup d None of these

Q.31 ER diagram an ellipse represents _____.

 a weak entity b relationship

 c attribute d entity class

Q.32 In ER diagram the relationship is represented by _____.

 a rectangle b ellipse

 c diamond d circle

Q.33 Relationship among entities of a single class is called as _____.

 a IS-A relationship b recursive relationship

 c HAS -A relationship d none of these

Q.34 The relationship used for connecting entities of different types when identifiers are

different _____.

 a HAS-A relationship b IS-A relationship

 c recursive relationship d none of these

Q.35 Which is not an example of strong entity type ?

 a Employee b Department

 c Emp_ID d Course

Q.36 If person is an entity then “Ankita” and “Prajkta” is the entity _____.

 a characteristics b field

 c identifier d instance

Q.37 Properties that describe the characteristics of entities are called :

 a entities b attributes

 c identifiers d relationships

Q.38 A student RollNumber, Name and Marks are all examples of _____.

 a entities b attributes

 c relationships d none of these

Q.39 An attribute which consists of a group of attributes is called as _____.

 a composite attribute b single valued attribute

 c multi-valued attribute d none of these

Database Management Systems 1 - 66 Unit - I

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.40 The attribute "age" is calculated from "date_of_Birth". The attribute "age" is _____.

 a single valued b multi valued

 c composite d derived

Q.41 The most common type of relationship used in data modeling is _____.

 a unary b binary

 c ternary d none of these

Q.42 An entity type whose existence depends on another entity type is called ___ entity.

 a strong b weak

 c dependent d mutually dependent

Q.43 Every weak entity set can be converted into a strong entity set by :

 a Using generalization b Adding appropriate attributes

 c Using aggregation d None of the above

Q.44 In a one-to-many relationship, the entity that is on the one side of the relationship is

called a(n) ________ entity.

 a parent b child

 c instance d subtype

Q.45 Which of the following is NOT a basic element of all versions of the E-R model ?

 a Entities b Attributes

 c Relationships d Primary keys

Q.46 The entity employee has three candidate keys : 1) EmpID 2) Email 3) Date_of_joining

4) Designation. Suggest best primary key for this entity :

 a EmpID b Email

 c Date_of_joining d Designation

Answers Keys for Multiple Choice Questions :

Q.1 b Q.2 d Q.3 a Q.4 b

Q.5 c Q.6 c Q.7 a Q.8 b

Q.9 b Q.10 d Q.11 c Q.12 b

Q.13 d Q.14 a Q.15 a Q.16 a

Q.17 d Q.18 d Q.19 b Q.20 d

Database Management Systems 1 - 67 Unit - I

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.21 d Q.22 c Q.23 a Q.24 c

Q.25 d Q.26 b Q.27 d Q.28 d

Q.29 c Q.30 b Q.31 c Q.32 c

Q.33 b Q.34 a Q.35 c Q.36 d

Q.37 b Q.38 b Q.39 c Q.40 d

Q.41 b Q.42 b Q.43 b Q.44 a

Q.45 d Q.46 a

Database Management Systems 1 - 68 Unit - I

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Notes

(2 - 1)

UNIT - II

2 Structured Query Language

Syllabus
SQL : Characteristics and Advantages, SQL Data Types and Literals, DDL, DML, DCL, TCL, SQL
Operators. Tables : Creating, Modifying, Deleting, Updating. SQL DML Queries : SELECT Query
and clauses, Index and Sequence in SQL. Views : Creating, Dropping, Updating using Indexes, Set
Operations, Predicates and Joins, Set membership, Tuple Variables, Set comparison, Ordering of
Tuples, Aggregate Functions, SQL Functions, Nested Queries.

Contents

2.1 Introduction to Structured Query Language (SQL)

2.2 SQL Data Types and Literals Nov.-17, Marks 5

2.3 DDL, DML, DCL and TCL Structure

2.4 Tables

2.5 SQL DML Queries

2.6 Logical Operators

2.7 String Operations

2.8 The BETWEEN Operator

2.9 Built-In Functions

2.10 NULL Values

2.11 EXISTS, NOT EXISTS and UNIQUE

2.12 Defining Constraints

2.13 Renaming Attributes

2.14 Tuple Variables

Database Management Systems 2 - 2 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

2.15 Schema Change Statements Nov.-18, Marks 5

2.16 Indexes ... Aug. 17, Dec. 18,

 ... May 19, Marks 5

2.17 Aggregate Functions ... Nov.-17, Marks 2

2.18 Set Operations

2.19 Nested Queries

2.20 Join Operation ... Nov.-17,19, May-19, Marks 6

2.21 Views ... July-18, Oct.-18,

 ... Nov.-19, Marks 8

2.22 Examples Based on SQL ... Aug 17,

 ... Dec. 17,18,

 ... May 18,19,

 ... Oct 18,19, Marks 5

Database Management Systems 2 - 3 Structured Query Language

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 2.1 Introduction to Structured Query Language (SQL)

 SQL stands for Structured Query Language.

 It is the language of databases and almost all companies use databases to store their
data.

 SQL makes use of query. A Query is a set of instruction given to the database
management system. It tells any database what information we would like to get
from the database.

 SQL is case- insensitive. However it has become standard in SQL community to use
all capital letters for SQL keywords.

 SQL is a standard language for Relational Database Management System (RDBMS).

 There are various RDBMS software that are popularly used. It includes MySQL,
Oracle, MS ACCESS, Microsoft SQL Server, Sybase and so on.

 2.1.1 Characteristics and Advantages

1) SQL is a standard computer language for creating and manipulating databases.

2) SQL is very simple and easy to learn.

3) SQL allows the users to create,update,delete and retrieve data from the database.

4) SQL is used to create view, stored procedures and functions in a database.

5) SQL allows the users to set the permissions on the tables, procedures and views in
the database.

 2.2 SQL Data Types and Literals SPPU : Nov.-17, Marks 5

Various data types used in SQL are -

1) Numeric data types

 Integer numbers : INT, INTEGER, SMALLINT, BIGINT

 Floating-point (real) numbers : REAL, DOUBLE , FLOAT

 Fixed-point numbers : DECIMAL(n,m), DEC(n,m), NUMERIC(n,m), NUM(n,m)

2) Character-string data types

 Fixed length : CHAR(n), CHARACTER(n)

 Varying length : VARCHAR(n), CHAR VARYING(n), CHARACTER VARYING(n),
LONG VARCHAR

3) Large object data types

 Characters : CLOB, CHAR LARGE OBJECT , CHARACTER LARGE OBJECT

Database Management Systems 2 - 4 Structured Query Language

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 Bits : BLOB, BINARY LARGE OBJECT

4) Boolean data type

 Values of TRUE or FALSE or NULL

5) DATE data type

 Ten positions

 Components are YEAR, MONTH, and DAY in the form YYYY-MM-DD

6) Additional Data type

a) TIMESTAMP data type

It includes the DATE and TIME fields.

b) INTERVAL data type

It specifies a relative value that can be used to increment or decrement an absolute
value of a date, time, or timestamp.

 2.3 DDL, DML, DCL and TCL Structure

There are four types of SQL commands -

Fig. 2.3.1

Data Definition Language

Sr.No. Command Purpose

1. CREATE This command is used to create database, tables, views or any other

database objects.

2. ALTER It modifies the existing tables.

3. DROP This command deletes complete table, view or any other database

object.

Database Management Systems 2 - 5 Structured Query Language

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Data Manipulation Language

Sr. No. Command Purpose

1. SELECT This command is used to retrieve either all or desired records from one
or more tables.

2. INSERT For inserting the records in the table, this command is used.

3. UPDATE For updating one or more fields of the table, this command is used.

4. DELETE This command is used for deleting the desired record

Data Control Language

Sr. No. Command Purpose

1. GRANT This command is used to give access rights or privileges to the
database.

2. INVOKE The revoke command removes user access rights or privileges to the
database objects.

Transaction Control Language (TCL)

Sr. No. Command Purpose

1. COMMIT This command is used to save permanently any transaction to database

2. ROLLBACK The ROLLBACK command is used to undo transactions that have not
already saved to database.

Difference between DDL and DML

DDL DML

DDL stands for Data Definition Language. DML stands for Data Manipulation
Language.

DDL commands are used to define database
structure.

DML commands are used for managing
data within the database.

It works on whole table. It works on one or more rows.

It cannot be classified further. It can be classified as – procedural and non-
procedural language.

Changes made by DDL commands cannot
be rolled back.

Changes by DML commands can be rolled
back.

Example - CREATE, ALTER, DROP
commands.

Example - SELECT, INSERT, UPDATE, and
DELETE commands.

Database Management Systems 2 - 6 Structured Query Language

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 Terminology : In relational model we use the terms relation tuple and attribute.

Same terms are used in SQL as follows

Relation Model SQL

Relation Table
Tuple Row

Attribute Column

 2.4 Tables

 2.4.1 Creating Table

 A database can be considered as a container for tables and a table is a grid with
rows and columns to hold data.

 Individual statements in SQL are called queries.

 We can execute SQL queries for various tasks such as creation of tables, insertion of
data into the tables, deletion of record from table, and so on.

In this section we will discuss how to create a table.

Step 1 : We normally create a database using following SQL statement

Syntax
CREATE DATABASE database_name;

Example
CREATE DATABASE Person_DB

Step 2 : The table can be created inside the database as follows –
CREATE TABLE table_name (
 col1_name datatype,
 col2_name datatype,
 …
 coln_name datatype
);

Example
CREATE TABLE person_details (
 AadharNo int,
 FirstName VARCHAR(20),
 MiddleName VARCHAR(20),
 LastName VARCHAR(20),
 Address VARCHAR(30),
 City VARCHAR(10)
)

The blank table will be created with following structure

Database Management Systems 2 - 7 Structured Query Language

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Person_details

AadharNo FirstName MiddleName LastName Address City

 2.4.2 Insertion of Data into the Table

 We can insert data into the table using INSERT statement.

Syntax
INSERT INTO table_name (col

1
,col

2
,…,col

n
)

VALUES (value
1
,value

2
,…,value

n
)

Example

INSERT INTO person_details (AadharNo, FirstName, MiddleName, LastName, Address, City)
 VALUES (111,'AAA','BBB','CCC','M.G. Road','Pune')

The above query will result into –

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. Road Pune

 2.4.3 Modifying the Record from the Table

 For modifying the existing record of a table, update query is used.
Syntax

UPDATE table_name
SET col1=value1, col2=value2,…
WHERE condition;

The WHERE command is used to specify some condition. Based on this condition the
data present in the table can be displayed or can be updated or deleted.

Example

Consider following table
Person_details table

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. Road Pune

222 DDD EEE FFF Shivaji nagar Pune

333 GGG HHH III Chandani Chowk Delhi

444 JJJ KKK LLL Viman Nagar Mumbai

If we execute following query
 UPDATE person_details
 SET city=’Chennai’
 WHERE AadharNo=333

Database Management Systems 2 - 8 Structured Query Language

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

The result will be

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. Road Pune

222 DDD EEE FFF Shivaji nagar Pune

333 GGG HHH III Chandani chowk Chennai

444 JJJ KKK LLL Viman nagar Mumbai

 2.4.4 Deleting Record from the Table

 We can delete one or more records based on some condition. The syntax is as
follows –

Syntax

 DELETE FROM table_name WHERE condition;

Example

DELETE FROM person_details
WHERE AadharNo=333

The result will be -

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. road Pune

222 DDD EEE FFF Shivaji nagar Pune

444 JJJ KKK LLL Viman nagar Mumbai

We can delete all the records from table. But in this deletion, all the records get deleted
without deleting table. For that purpose the SQL statement will be
 DELETE FROM person_details;

 2.5 SQL DML Queries

 DML stands for Data manipulation Language

 The basic operations under DML queries are SELECT, INSERT, UPDATE, and
DELETE

We have already discussed INSERT, DELETE and UPDATE operations in previous
section. Let us now discuss the SELECT operation.

Database Management Systems 2 - 9 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.5.1 SELECT Query

 The Select statement is used to fetch the data from the database table.

 The result returns the data in the form of table. These result tables are called
resultsets.

 We can use the keyword DISTINCT. It is an optional keyword indicating that the
answer should not contain duplicates. Normally if we write the SQL without
DISTINCT operator then it does not eliminate the duplicates.

Syntax

SELECT col1, col2, …,coln FROM table_name;

Example

SELECT AadharNo, FirstName, Address, City FROM person_details

The result of above query will be

AadharNo FirstName City

111 AAA Pune

 If we want to select all the records present in the table we make use of * character.

Syntax

SELECT * FROM table_name;

Example

SELECT * FROM person_details;

The above query will result into

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. road Pune

 Use of DISTINCT Keyword: The keyword DISTINCT is used along with the
SELECT statements.

 It is used to obtain unique values from the table. This query does not allow
duplication of element.

Syntax :

SELECT DISTINCT Column-name FROM table-name;

Database Management Systems 2 - 10 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Example:

 Consider following database table Student

Roll No Name City

1 Ankita Pune

2. Rohit Hyderabad

3. Prajkta Chennai

4. Sunil Pune

5. Sharda Chennai

SQL Statement

SELECT DISTINCT City
FROM Student;

This will result into

Pune

Hyderabad

Chennai

 2.5.2 WHERE

The WHERE command is used to specify some condition. Based on this condition the
data present in the table can be displayed or can be updated or deleted.

Syntax

SELECT col1,col2, …,coln
FROM table_name
WHERE condition;

Example

Consider following table

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. road Pune

222 DDD EEE FFF Shivaji nagar Pune

333 GGG HHH III Chandani chowk Delhi

444 JJJ KKK LLL Viman nagar Mumbai

Database Management Systems 2 - 11 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

If we execute the following query
 SELECT AadharNo

FROM person_details
 WHERE city=’Pune’;

The result will be –

AadharNo City

111 Pune

222 Pune

If we want records of all those person who live in city Pune then we can write the
query using WHERE clause as
 SELECT *
 FROM person_details
 WHERE city=’Pune’;

The result of above query will be

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. road Pune

222 DDD EEE FFF Shivaji nagar Pune

 2.5.3 Clauses

Most commonly used clauses in SQL statements are Order by, Group by and Having.
Let us discuss them along with syntax and examples.

(1) Order By

 Many times we need the records in the table to be in sorted order.

 If the records are arranged in increasing order of some column then it is called
ascending order.

 If the records are arranged in decreasing order of some column then it is called
descending order.

 For getting the sorted records in the table we use ORDER BY command.

 The ORDER BY keyword sorts the records in ascending order by default.

Syntax
SELECT col1, col2,…,coln
FROM table_name
ORDER BY col1,col2,… ASC|DESC

Here ASC is for ascending order display and DESC is for descending order display.

Database Management Systems 2 - 12 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Example

Consider following table

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. road Pune

222 DDD EEE FFF Shivaji nagar Pune

333 GGG HHH III Chandani

chowk

Delhi

444 JJJ KKK LLL Viman nagar Mumbai

SELECT *
FROM person_details
ORDER BY AadharNo DESC;

The above query will result in

AadharNo FirstName MiddleName LastName Address City

444 JJJ KKK LLL Viman nagar Mumbai

333 GGG HHH III Chandani chowk Delhi

222 DDD EEE FFF Shivaji nagar Pune

111 AAA BBB CCC M.G. road Pune

(2) Group By

 The GROUP BY clause is a SQL command that is used to group rows that have the
same values.

 The GROUP BY clause is used in the SELECT statement.

 Optionally it is used in conjunction with aggregate functions.

 The queries that contain the GROUP BY clause are called grouped queries

 This query returns a single row for every grouped item.

 Syntax :
 SELECT column_name(s)
 FROM table_name
 WHERE condition
 GROUP BY column_name(s)

Database Management Systems 2 - 13 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example : Consider the Student table as follows -

sid sname marks city

1 AAA 60 Pune

2 BBB 70 Mumbai

3 CCC 90 Pune

4 DDD 55 Mumbai

Query : Find the total marks of each student in each city

 SELECT SUM(marks), city
 FROM Student

 GROUP BY city

The result will be as follows –

SUM(marks) city

150 Pune

125 Mumbai

(3) Having

 HAVING filters records that work on summarized GROUP BY results.

 HAVING applies to summarized group records, whereas WHERE applies to
individual records.

 Only the groups that meet the HAVING criteria will be returned.

 HAVING requires that a GROUP BY clause is present.

 WHERE and HAVING can be in the same query.

 Syntax :
 SELECT column-names
 FROM table-name
 WHERE condition
 GROUP BY column-names
 HAVING condition

Database Management Systems 2 - 14 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example : Consider the Student table as follows -

sid sname marks city

1 AAA 60 Pune

2 BBB 70 Mumbai

3 CCC 90 Pune

4 DDD 55 Mumbai

5 EEE 84 Chennai

Query : Find the total marks of each student in the city named ‘Pune’ and ‘Mumbai’
only
SELECT SUM(marks), city
FROM Student
GROUP BY city
HAVING city IN(‘Pune’,’Mumbai’)

 The result will be as follows –

SUM(marks) city

150 Pune

125 Mumbai

 2.6 Logical Operators

 Using WHERE clause we can use the operators such as AND, OR and NOT.

 AND operator displays the records if all the conditions that are separated using
AND operator are true.

 OR operator displays the records if any one of the condition separated using OR
operator is true.

 NOT operator displays a record if the condition is NOT TRUE.

Consider following table

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. road Pune

222 DDD EEE FFF Shivaji nagar Pune

Database Management Systems 2 - 15 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

333 GGG HHH III Chandani chowk Delhi

444 JJJ KKK LLL Viman nagar Mumbai

Syntax of AND

SELECT col1, col2, ...
FROM table_name
WHERE condition1 AND condition2 AND condition3 …;

Example of AND

If we execute following query –
 SELECT AadharNo, FirstName, City
 FROM person_details
 WHERE AadharNo=222 AND City=’Pune’;

The result will be –

AadharNo FirstName City

222 DDD Pune

Syntax of OR

SELECT col1, col2, ...
FROM table_name
WHERE condition1 OR condition2 OR condition3 …;

Example of OR

SELECT AadharNo, FirstName, City
FROM person_details
WHERE City=’Pune’ OR City=’Mumbai’;

The result will be –

AadharNo FirstName City

111 AAA Pune

222 DDD Pune

444 JJJ Mumbai

Syntax of NOT

SELECT col1, col2, ...
FROM table_name
WHERE NOT condition;

Example of NOT

SELECT AadharNo, FirstName, City
FROM person_details
WHERE NOT City=’Pune’;

Database Management Systems 2 - 16 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The result will be

AadharNo FirstName City

333 GGG Delhi

444 JJJ Mumbai

 2.7 String Operations

 For string comparisons, we can use the comparison operators =, <, >,<=,>=,<> with
the ordering of strings determined alphabetically as usual.

 SQL also permits a variety of functions on character strings such as concatenation
suing operator||, extracting substrings, finding length of string, converting strings
to upper case(using function upper(s)) and lowercase(using function lower(s)),
removing spaces at the end of string(using function(trim(s)) and so on.

 Pattern matching can also be performed on strings using two types of special
characters –

o Percent(%) : It matches zero, one or multiple characters

o Underscore(_) : The _ character matches any single character.

 The percentage and underscore can be used in combinations.

 Patterns are case sensitive. That means upper case characters do not match
lowercase characters or vice versa.

 For instance :

o ‘Data%’ matches any string beginning with “Data”, For instance it could be with
“Database”, “DataMining”,”DataStructure”

o ‘_ _ _’ matches any string of exactly three characters.

o ‘_ _ _ %’matches any string of at least length 3 characters.

 The LIKE clause can be used in WHERE clause to search for specific patterns.

 For example – Consider following Employee Database

EmpID EmpName Department Date_of_Join

1 Sunil Marketing 1-Jan

2 Mohsin Manager 2-Jan

3 Supriya Manager 3-Jan

4 Sonia Accounts 4-Jan

5 Suraj Sales 5-Jan

6 Archana Purchase 6-Jan

Database Management Systems 2 - 17 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(1) Find all the employee with EmpName starting with “s”

SQL Statement :
SELECT * FROM Employee
WHERE EmpName LIKE ‘s%’

Output

EmpID EmpName Department Date_of_Join

1 Sunil Marketing 1-Jan

3 Supriya Manager 3-Jan

4 Sonia Accounts 4-Jan

5 Suraj Sales 5-Jan

(2) Find the names of employee whose name begin with S and end with a

SQL Statement :
 SELECT EmpName FROM Employee
 WHERE EmpName LIKE ‘S%a’

Output

EmpName

Supriya

Sonia

(3) Find the names of employee whose name begin with S and followed by exactly four

characters

 SELECT EmpName FROM Employee

 WHERE EmpName LIKE ‘S_ _ _ _ ‘

Output

EmpName

Sunil

Sonia

Suraj

Database Management Systems 2 - 18 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.8 The BETWEEN Operator

 The between operator can be used to simplify the where clause which is used to
denote the value be less than or equal to some value and greater than or equal to
some other value.

 For example – of we want the names of the students whose marks are between 80
and 90 then SQL statement will be

SELECT name

FROM Students
WHERE marks BETWEEN 80 and 90;

 2.9 Built-In Functions

 In SQL a built-in function is a piece for programming that takes zero or more inputs
and returns a value.

 An example of a built-in functions is ABS(), which when given a value calculates the
absolute (non-negative) value of the number.

Query

SELECT ABS(-9) Result;

Output

Result

9

Mathematical Functions

Function Value Returned

ABS (m) Absolute value of m

MOD (m, n) Remainder of m divided by n

POWER (m, n) m raised to the nth power

ROUND (m [, n]) m rounded to the nth decimal place

TRUNC (m [, n]) m truncated to the nth decimal place

SIN (n) sine (n)

Database Management Systems 2 - 19 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

COS (n) cosine (n)

TAN (n) tan (n)

SQRT (n) positive square root of n

EXP (n) e raised to the power n

LOG (n2, n1) logarithm of n1, base n2

CEIL (n) smallest integer greater than or equal to n

FLOOR (n) greatest integer smaller than or equal to n

SIGN (n) -1 if n < 0, 0 if n = 0, and 1 if n > 0

String Functions

Function Value Returned

INITCAP (s) First letter of each word is changed to uppercase

and all other letters are in lower case.

LOWER (s) All letters are changed to lowercase.

UPPER (s) All letters are changed to uppercase.

CONCAT (s1, s2) Concatenation of s1 and s2. Equivalent to s1 || s2

LTRIM (s [, set]) Returns s with characters removed up to the first

character not in set; defaults to space

RTRIM (s [, set]) Returns s with final characters removed after the

last character not in set; defaults to space

REPLACE (s, search_s [,

replace_s])

Returns s with every occurrence of search_s in s

replaced by replace_s; default removes search_s

SUBSTR (s, m [, n]) Returns a substring from s, beginning in position

m and n characters long; default returns to end of

s.

LENGTH (s) Returns the number of characters in s.

Database Management Systems 2 - 20 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

For example

SELECT CONCAT('Bill', 'Gates') as "NAME"

Date and Time Functions

Function Value Returned

ADD_MONTHS (d, n) Date d plus n months

LAST_DAY (d) Date of the last day of the month containing d

MONTHS_BETWEEN (d, e) Number of months by which e precedes d

NEW_TIME (d, a, b) The date and time in time zone b when date d

is for time zone a

NEXT_DAY (d, day) Date of the first day of the week after d

SYSDATE Current date and time

GREATEST (d1, d2, ..., dn) Latest of the given dates

LEAST (d1, d2, ..., dn) Earliest of the given dates

For example

SELECT SYSDATE();

Will result in
2019-06-27 10:02:39

 2.10 NULL Values

 In SQL NULL is an important value. NULL is nothing but a missing value. But it
has three different interpretations -

1) Unknown Value : If student’s age is not known then the NULL represents
the unknown value.

2) Unavailable Value : If a persons’ phone number is not available then it can be
represented by NULL value in the database

3) Not applicable Attribute : If some value is not applicable to current database
systems then it can be represented by NULL. For instance - Parent’s
designation is not applicable in student database system.

 When a record with NULL in one of its attributes is involved in a comparison
operation, result is UNKNOWN.

Database Management Systems 2 - 21 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 SQL uses a three-valued logic with values TRUE, FALSE, and UNKNOWN instead
of the standard two-valued (Boolean) logic with values TRUE or FALSE. Using the
logical operators AND, OR and NOT the result of these three values is represented
in the following table -

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

 For example - The result of FALSE AND TRUE is FALSE

 SQL allows queries that check whether an attribute value is NULL. For that, instead
of using =, <> (not equal to), it compares attribute value to NULL using the
operators IS or IS NOT.

 For instance - Retrieve names of all students who do not opt for any sports.

 SELECT FName, LName

 FROM STUDENT

 WHERE sports_type IS NULL

Database Management Systems 2 - 22 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.11 EXISTS, NOT EXISTS and UNIQUE

 The EXISTS operator is used to test for the existence of any record in a subquery.
The EXISTS operator returns true if the subquery returns one or more records.

 Syntax
 SELECT column_name(s)
 FROM table_name
 WHERE EXISTS
 (SELECT column_name FROM table_name WHERE condition);

 Example - Consider two tables namely Student and Student_Score table as follows -

Student Table

RollNo FName LName

1. Anil Kumble

2. Virat Kohli

3. Suresh Raina

Student_Score Table

Subject TestNo Grade RollNo

Maths 1 10 1

Maths 2 9.5 1

Maths 3 9.75 1

Science 4 9.5 1

Science 5 8.5 1

Maths 6 9.25 2

Maths 7 9.8 2

Science 8 7 2

Let’s say we want to get all students that have received a 10 grade in the subject
‘Maths’.

Database Management Systems 2 - 23 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The SQL query using EXISTS can be written as follows –
 SELECT
 RollNo, FName, LName
 FROM
 Student
 WHERE EXISTS (
 SELECT Student_Score.RollNo
 FROM
 Student_Score
 WHERE
 Student_Score.RollNo = Student.RollNo AND
 Student_Score.grade = 10 AND
 Student_Score.Subject = 'Maths'
)

After running the above query the result will be -

RollNo FName LName

1. Anil Kumble

The outer query selects the student row columns we are interested in returning to the
client. However, the WHERE clause is using the EXISTS operator with an associated inner
subquery.

 The EXISTS operator returns true if the subquery returns at least one record and
false if no row is selected.

 The NOT EXISTS operator returns true if the underlying subquery returns no
record. However, if a single record is matched by the inner subquery, the NOT
EXISTS operator will return false, and the subquery execution can be stopped.

 The UNIQUE(Q) function returns TRUE if there are no duplicate tuples in the result
of query Q.

 Syntax
 SELECT UNIQUE column_name1, column_name2, …, column_namen
 FROM table_name;

 Example - Suppose there is a Student table as follows –

Student

RollNo Name City Age

1 AAA Pune 19

2 BBB Mumbai 19

3 CCC Chennai 20

4 DDD Delhi 20

Database Management Systems 2 - 24 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

If we execute following query
 SELECT Age FROM Student;

Then the result will be

Age

19

19

20

20

Now if we execute following query
 SELECT UNIQUE Age FROM Student;

The result will be

Age

19

20

 2.12 Defining Constraints

 We can specify rules for data in a table.

 When the table is created at that time we can define the constraints.

 The constraint can be column level i.e. we can impose constraint on the column and
table level i.e we can impose constraint on the entire table.

 There are various types of constraints that can be defined are as follows -

(1) Primary key : The primary key constraint is defined to uniquely identify the records
from the table.

The primary key must contain unique values. Hence database designer should choose
primary key very carefully.

For example

Consider that we have to create a perons_details table with AdharNo, FirstName,
MiddleName, LastName, Address and City.

Now making AdharNo as a primary key is helpful here as using this field it becomes
easy to identify the records correctly.

Database Management Systems 2 - 25 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The result will be
 CREATE TABLE person_details (

 AadharNo int,

 FirstName VARCHAR(20),

 MiddleName VARCHAR(20),

 LastName VARCHAR(20),

 Address VARCHAR(30),

 City VARCHAR(10),

 PRIMARY KEY(AadharNo)

);

We can create a composite key as a primary key using CONSTRAINT keyword. For
example
 CREATE TABLE person_details (

 AadharNo int NOT NULL,

 FirstName VARCHAR(20),

 MiddleName VARCHAR(20),

 LastName VARCHAR(20) NOT NULL,

 Address VARCHAR(30),

 City VARCHAR(10),

 CONSTRAINT PK_person_details PRIMARY KEY(AadharNo, LastName)

);

(2) Foreign Key

 Foreign key is used to link two tables.

 Foreign key for one table is actually a primary key of another table.

 The table containing foreign key is called child table and the table containing
candidate primary key is called parent key.

 Consider

Employee Table

EmpID LastName FirstName Age

1 Khanna Rajesh 30

2 Joshi Sharman 23

3 Kapoor Tushar 20

Database Management Systems 2 - 26 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Dept Table :

DeptID DeptName EmpID

1 Accounts 3

2 Production 3

3 Sales 2

4 Purchase 1

 Notice that the "EmpID" column in the "Dept" table points to the "EmpID" column
in the "Employee" table.

 The "EmpID" column in the "Employee" table is the PRIMARY KEY in the
"Employee" table.

 The "EmpID" column in the "Dept" table is a FOREIGN KEY in the "Dept" table.

 The FOREIGN KEY constraint is used to prevent actions that would destroy links
between tables.

 The FOREIGN KEY constraint also prevents invalid data from being inserted into
the foreign key column, because it has to be one of the values contained in the table
it points to.

 The purpose of the foreign key constraint is to enforce referential integrity but there
are also performance benefits to be had by including them in your database design.

The table Dept can be created as follows with foreign key constraint.
 CREATE TABLE DEPT (
 DeptID int
 DeptName VARCHAR(20),
 EmpID int,
 PRIMARY KEY(DeptID),
 FOREIGN KEY(EmpID) REFERENCES EMPLOYEE(EmpID)
);

(3) Unique

Unique constraint is used to prevent same values in a column. In the EMPLOYEE
table, for example, you might want to prevent two or more employees from having an
identical designation. Then in that case we must use unique constraint.

We can set the constraint as unique at the time of creation of table, or if the table is
already created and we want to add the unique constraint then we can use ALTER
command.

Database Management Systems 2 - 27 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

For example –
 CREATE TABLE EMPLOYEE(
 EmpID INT NOT NULL,
 Name VARCHAR (20) NOT NULL,
 Designation VARCHAR(20) NOT NULL UNIQUE,
 Salary DECIMAL (12, 2),
 PRIMARY KEY (EmpID)
);

If table is already created then also we can add the unique constraint as follows –
 ALTER TABLE EMPLOYEE
 MODIFY Designation VARCHAR(20) NOT NULL UNIQUE;

(4) NOT NULL

 By default the column can have NULL values.

 NULL means unknown values.

 We can set the column values as non NULL by using the constraint NOT NULL.

 For example –
 CREATE TABLE EMPLOYEE(
 EmpID INT NOT NULL,
 Name VARCHAR (20) NOT NULL,
 Designation VARCHAR(20) NOT NULL,
 Salary DECIMAL (12, 2) NOT NULL,
 PRIMARY KEY (EmpID)
);

(5) CHECK

The CHECK constraint is used to limit the value range that can be placed in a column.

For example
 CREATE TABLE parts (
 part_no int PRIMARY KEY,
 description VARCHAR(40),
 price DECIMAL(10 , 2) NOT NULL CHECK(cost > 0)
);

(6) IN operator

The IN operator is just similar to OR operator.

It allows to specify multiple values in WHERE clause.

Syntax
SELECT col1,col2,...
FROM table_name
WHERE column-name IN (value1, value2, ...);

Database Management Systems 2 - 28 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Example

Consider following table

Employee

empID empName Salary DeptID

1 AAA 1000 D101

2 BBB 2000 D102

3 CCC 3000 D103

4 DDD 4000 D104

5 EEE 5000 D105

SELECT * FROM Employee
WHERE empID IN (1, 3);

The result will be

empID empName Salary DeptID

1 AAA 1000 D101

2 BBB 2000 D102

3 CCC 3000 D103

 2.13 Renaming Attributes

The SQL AS is used to assign temporarily a new name to a table column or
table(relation) itself. One reason to rename a relation is to replace a long relation name
with a shortened version that is more convenient to use elsewhere in the query. For
example - “Find the names of students and isbn of book who reserve the books”.

 Student Reserve

sid sname age sid isbn day

1 Ram 21 1 005 07-07-18

2 Shyam 18 2 007 03-03-18

3 Seeta 16 3 009 05-05-18

4 Geeta 23

 Select S.sname,R.isbn
 From Student as S, Reserve as R
 Where S.sid=R.sid

Database Management Systems 2 - 29 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

In above case we could shorten the names of tables Student and Reserve as S and R
respectively.

Another reason to rename a relation is a case where we wish to compare tuples in the
same relation. We then need to take the Cartesian product of a relation with itself. For
example –

If the query is - Find the names of students who reserve the book of isbn 005. Then the
SQL statement will be -
 Select S.sname,R.isbn
 From Student as S, Reserve as R
 Where S.sid=R.sid and S.isbn=005

 2.14 Tuple Variables

Tuple variables can be used in SQL and are defined in the FROM clause.

For example –

SELECT DISTINCT cname, C.courseID

FROM Student AS S, Course AS C

WHERE S.courseID = C.courseID

 Note that we have used the tuple variables as S.courseID and C.courseID. The
keyword AS is optional here. Thus tuple variables can be used throughout the expression
in SQL.

 2.15 Schema Change Statements SPPU : Nov.-18,(End Sem), Marks 5

Schema can be changed by adding or dropping tables, attributes and constraints.
These commands are also known as schema evolution commands.

There are two commands that change the schema and those are DROP and ALTER.

Let us discuss these commands in detail

 2.15.1 The DROP Command

 The DROP command is used to remove the object (table, domains and constraints)
from the database. There are two options for the DROP command - CASCADE and
RESTRICT.

 To use the RESTRICT option, the user must first individually drop each element in
the schema, then drop the schema itself. That means, the schema is dropped only if
it has no elements in it, otherwise the DROP command can not be executed.

 Otherwise to remove completely some database schema CASCADE option is
chosen. For example – to remove the Student_database

Database Management Systems 2 - 30 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 DROP SCHEMA Student_database CASCADE;

 If the table is to be deleted then the SQL command would be -
 DROP TABLE Student CASCADE;

 The DROP TABLE command not only deletes all the records in the table if
successful, but also removes the table definition from the catalog. If it is desired to
delete only the records but to leave the table definition for future use, then the
DELETE command. For example -

 The following SQL statement deletes all rows in the "Students" table, without
deleting the table :

 DELETE FROM Students;

 2.15.2 The ALTER Command

There are SQL commands for alteration of table. That means we can add new column
or delete some column from the table using these alteration commands.

Syntax for Adding columns

ALTER TABLE table_name
ADD column_name datatype;

Example

Consider following table

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. Road Pune

222 DDD EEE FFF Shivaji nagar Pune

333 GGG HHH III Chandani chowk Delhi

444 JJJ KKK LLL Viman nagar Mumbai

If we execute following command

 ALTER TABLE Customers
 ADD Email varchar(30);

Database Management Systems 2 - 31 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Then the result will be as follows -

AadharNo FirstName MiddleName LastName Address City Email

111 AAA BBB CCC M.G. road Pune NULL

222 DDD EEE FFF Shivaji nagar Pune NULL

333 GGG HHH III Chandani
chowk

Delhi NULL

444 JJJ KKK LLL Viman nagar Mumbai NULL

Syntax for Deleting columns

ALTER TABLE table_name
DROP COLUMN column_name;

Example

Consider following table -

AadharNo FirstName MiddleName LastName Address City

111 AAA BBB CCC M.G. road Pune

222 DDD EEE FFF Shivaji nagar Pune

333 GGG HHH III Chandani chowk Delhi

444 JJJ KKK LLL Viman nagar Mumbai

If we execute following command
 ALTER TABLE Customers
 DROP COLUMN Address;

Then the result will be as follows -

AadharNo FirstName MiddleName LastName City

111 AAA BBB CCC Pune

222 DDD EEE FFF Pune

333 GGG HHH III Delhi

444 JJJ KKK LLL Mumbai

Database Management Systems 2 - 32 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.16 Indexes SPPU : Aug. 17, In Sem, Dec. 18, May 19, End Sem, Marks 5

Index is a pointer to the data in the database table. These are also called as lookup
tables. With the help of indexing data retrieval becomes fast and efficient. The concept of
index is just similar to the index at the back of the book which contains the keywords.
Using these keywords it is easy to locate the desired record quickly from the database
table.

1) Creating an Index

Syntax for creating an Index
CREATE INDEX index_name ON table_name;

Example

Consider following Book table

isbn bname Author

005 DBMS XYZ

006 OS PQR

007 DAA ABC

We can create an index named idx_isbn using the field isbn of the Book table.

CREATE INDEX idx_isbn
ON Book(isbn);

Creating Index using UNIQUE

Syntax
CREATE UNIQUE INDEX index_name
ON table_name (column1, column2, ...);

2) Creating Index on Multiple Columns

We can create index using more than one columns of the table. For example – For the
above given Book table we can create an index as

CREATE INDEX idx_isbn

ON Book(bname, Author);

3) Dropping the Index

The DROP INDEX statement is used to delete an index in a table.

The syntax is

DROP INDEX index_name

Database Management Systems 2 - 33 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 2.16.1 It is easy to create index on all attributes of any relation, why it is not
recommended to create index on all attributes ?

 SPPU : Dec 18, May 19, End Sem, Marks 5

Solution : The index is used to access the desired records efficiently. If we create index on
a single attribute then the record can be accessed quickly. As every index requires some
disk space and if we create index on all the attributes of any relation then it such index
will require more memory.

Secondly, every tome when we add or update the record then we have to recalculate
the indexes and it will take a lot of time and will cause to perform less efficiently.

Hence it is not recommended to create index on all attributes

Review Question

1. What is index created on table column ? How performance of SELECT query is improved if
index is created on table ? SPPU : Aug 17, In Sem, Marks 5

 2.17 Aggregate Functions SPPU : Nov.-17, (End Sem), Marks 2

 An aggregate function allows you to perform a calculation on a set of values to
return a single scalar value.

 SQL offers five built-in aggregate functions :
1. Average : avg 2. Minimum : min
3. Maximum : max 4. Total : sum 5. Count :

 The aggregate functions that accept an expression parameter can be modified by the
keywords DISTINCT or ALL. If neither is specified, the result is the same as if ALL
were specified.

DISTINCT Modifies the expression to include only distinct values that are not NULL

ALL Includes all rows where expression is not NULL

 Syntax of all the Aggregate Functions

 AVG([DISTINCT | ALL] expression)
 COUNT(*)
 COUNT([DISTINCT | ALL] expression)
 MAX([DISTINCT | ALL] expression)
 MIN([DISTINCT | ALL] expression)
 SUM([DISTINCT | ALL] expression)

 The avg function is used to compute average value. For example – To compute
average marks of the students we can use

 SQL Statement
 SELECT AVG(marks)
 FROM Students

Database Management Systems 2 - 34 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The Count function is used to count the total number of values in the specified field.
It works on both numeric and non-numeric data type. COUNT (*) is a special
implementation of the COUNT function that returns the count of all the rows in a
specified table. COUNT (*) also considers Nulls and duplicates. For example
Consider following table

 Test

id value

11 100

22 200

33 300

NULL 400

SQL Statement
 SELECT COUNT(*)
 FROM Test
 Output
 4
 SELECT COUNT(ALL id)
 FROM Test
 Output
 3

 The min function is used to get the minimum value from the specified column. For
example – Consider the above created Test table

 SQL Statement
 SELECT Min(value)
 FROM Test
 Output
 100

 The max function is used to get the maximum value from the specified column. For
example - Consider the above created Test table

 SQL Statement
 SELECT Max(value)
 FROM Test
 Output
 400

 The sum function is used to get total sum value from the specified column. For
example - Consider the above created Test table

 SQL Statement
 SELECT sum(value)
 FROM Test

Database Management Systems 2 - 35 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Output
 1000

 Example 2.17.1 Consider, the following database,

Student(RollNo, Name, Address)

Subject(Sub_code, Sub_Name)

Marks (Roll_no, Sub_code, Marks)

Write following queries in SQL.

Find average marks of each student, along with the name of Student
 SPPU : Nov.-17, (End Sem), Marks 2

Solution:

SELECT Name, AVG(Marks)

FROM Student,Marks

WHERE Student.Roll_No=Marks.Roll_No

 2.18 Set Operations

Set is a collection of elements on which union, intersection and difference operations
can be performed.

1) Union : To use this UNION clause, each SELECT statement must have
i) The same number of columns selected
ii) The same number of column expressions
iii) The same data type and
iv) Have them in the same order

This clause is used to combine two tables using UNION operator. It replaces the OR
operator in the query. The union operator eliminates duplicate while the union all query
will retain the duplicates.

Syntax :

The basic syntax of a UNION clause is as follows -
 SELECT column1 [, column2]
 FROM table1 [, table2]
 [WHERE condition]
 UNION
 SELECT column1 [, column2]
 FROM table1 [, table2]
 [WHERE condition]

Here, the given condition could be any given expression based on your requirement.

Example : Find the names of the students who have reserved the ‘DBMS’ book or ‘OS’
Book.

Database Management Systems 2 - 36 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The query can then be written by considering the Student, Reserve and Book table as
 SELECT S.sname
 FROM Student S, Reserve R, Book B
 WHERE S.sid=R.sid AND R.isbn=B.isbn AND B.bname=’DBMS’
 UNION
 SELECT S.sname
 FROM Student S, Reserve R, Book B
 WHERE S.sid=R.sid AND R.isbn=B.isbn AND B.bname=’OS’

2) Intersect : The common entries between the two tables can be represented with the
help of Intersect operator. It replaces the AND operator in the query.

Syntax :

The basic syntax of a INTERSECT clause is as follows-
 SELECT column1 [, column2]
 FROM table1 [, table2]
 [WHERE condition]
 INTERSECT
 SELECT column1 [, column2]
 FROM table1 [, table2]
 [WHERE condition]

Example : Find the students who have reserved both the ‘DBMS’ book and ‘OS’ Book

The query can then be written by considering the Student, Reserve and Book table as
 SELECT S.sid, S.sname
 FROM Student S, Reserve R, Book B
 WHERE S.sid=R.sid AND R.isbn=B.isbn AND B.bname=’DBMS’
 INTERSECT
 SELECT S.sname
 FROM Student S, Reserve R, Book B
 WHERE S.sid=R.sid AND R.isbn=B.isbn AND B.bname=’OS’

3) Except : The EXCEPT clause is used to represent the set-difference in the query.
This query is used to represent the entries that are present in one table and not in
other.

Syntax :

The basic syntax of a EXCEPT clause is as follows-
 SELECT column1 [, column2]
 FROM table1 [, table2]
 [WHERE condition]
 EXCEPT
 SELECT column1 [, column2]
 FROM table1 [, table2]
 [WHERE condition]

Database Management Systems 2 - 37 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Example : Find the students who have reserved both the ‘DBMS’ book but not
reserved ‘OS’ Book

The query can then be written by considering the Student, Reserve and Book table as
 SELECT S.sid, S.sname
 FROM Student S, Reserve R, Book B
 WHERE S.sid=R.sid AND R.isbn=B.isbn AND B.bname=’DBMS’
 EXCEPT
 SELECT S.sname
 FROM Student S, Reserve R, Book B
 WHERE S.sid=R.sid AND R.isbn=B.isbn AND B.bname=’OS’

 2.19 Nested Queries

In nested queries, a query is written inside a query. The result of inner query is used
in execution of outer query.

There are two types of nested queries :

(i) Independent Query (ii) Corelated Query

i) Independent Query :

 In independent nested queries, query execution starts from innermost query to
outermost queries.

 The execution of inner query is independent of outer query, but the result of inner
query is used in execution of outer query.

 Various operators like IN, NOT IN, ANY, ALL etc are used in writing independent
nested queries.

 For example - Consider three tables namely Student, City and Student_City as
follows -

Student City

 sid sname phone cid cname

1 Ram 1111 101 Pune

2 Shyam 2222 102 Mumbai

3 Seeta 3333 103 Chennai

4 Geeta 4444

Database Management Systems 2 - 38 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Student_City

 sid cid

 1 101

 1 103

 2 101

 3 102

 4 102

 4 103

 Example 1 - If we want to find out sid who live in city ‘Pune’ or ‘Chennai’. We can
then write independent nested query using IN operator. Here we can use the IN
operator allows you to specify multiple values in a WHERE clause. The IN operator
is a shorthand for multiple OR conditions.

Step 1 : Find cid for cname=’Pune’ or ‘Chennai’. The query will be
SELECT cid

FROM City
WHERE cname=’Pune’ or ‘Chennai’

Step 2 : Using cid obtained in step 1 we can find the sid. The query will be
SELECT sid
FROM Student_City

WHERE cid IN
 (
 SELECT cid

 FROM City
 WHERE cname=’Pune’ or cname=’Chennai’
)

The inner query will return a set with members 101 and 103 and outer query will
return those sid for which cid is equal to any member of set (101 and 103 in this case). So,
it will return 1, 2 and 4.

Example 2 : If we want to find out sname who live in city ‘Pune’ or ‘Chennai’.
SELECT sname

FROM Student
WHERE sid IN

 (SELECT sid
 FROM Student_City

Database Management Systems 2 - 39 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 WHERE cid IN
 (SELECT cid
 FROM City

 WHERE cname=’Pune’ or cname=’Chennai’
)
)

ii) Co-related Query :

In co-related nested queries, the output of inner query depends on the row which is
being currently executed in outer query. For example

 If we want to find out sname of Student who live in city with cid as 101, it can be
done with the help of co-related nested query as :
 SELECT sname
 FROM Student S
 WHERE EXISTS
 (SELECT *
 FROM Student_City SC
 WHERE S.sid=SC.sid and SC.cid=101
)

Here for each row of Student S, it will find the rows from Student_City where S.sid =
SC.sid and SC.cid=101.

If for a sid from Student S, atleast a row exists in Student_City SC with cid=101, then
inner query will return true and corresponding sid will be returned as output.

 2.20 Join Operation SPPU : Nov.-17,19, May-19, Marks 6

The SQL Joins clause is used to combine records from two or more tables in a
database. A JOIN is a means for combining fields from two tables by using values
common to each.

Various types of join operations are –

Fig. 2.20.1 Types of join operations

Example : Consider two tables for using the joins in SQL. Note that cid is common
column in following tables.

Database Management Systems 2 - 40 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Student Reserve

sid cid sname cid cname

1 101 Ram 101 Pune

2 101 Shyam 102 Mumbai

3 102 Seeta 103 Chennai

4 NULL Geeta

1) Inner Join :

 The most important and frequently used of the joins is the INNER JOIN. They are
also known as an EQUIJOIN.

 The INNER JOIN creates a new result table by combining column values of two
tables (Table1 and Table2) based upon the join-predicate.

 The query compares each row of Table 1 with each row of Table 2 to find all pairs of
rows which satisfy the join-predicate.

 When the join-predicate is satisfied, column values for each matched pair of rows of
A and B are combined into a result row. It can be represented as :

 Syntax : The basic syntax of the INNER JOIN is as follows.
 SELECT Table1.column1, Table2.column2...

FROM Table1
 INNER JOIN Table2
 ON Table1.common_field = Table2.common_field;

 Example : For above given two tables namely Student and City, we can apply inner
join. It will return the record that are matching in both tables using the common
column cid.

The query will be
 SELECT *
 FROM Student Inner Join City on Student.cid=City.cid

Database Management Systems 2 - 41 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The result will be

sid cid sname cid cname

1 101 Ram 101 Pune

2 101 Shyam 101 Pune

3 102 Seeta 102 Mumbai

2) Left Join(Outer Join) :

 The SQL LEFT JOIN returns all rows from the left table, even if there are no matches
in the right table. This means that if the ON clause matches 0 (zero) records in the
right table; the join will still return a row in the result, but with NULL in each
column from the right table.

 This means that a left join returns all the values from the left table, plus matched
values from the right table or NULL in case of no matching join predicate.

 It can be represented as –

 Syntax : The basic syntax of a LEFT JOIN is as follows.
 SELECT

SELECT Table1.column1, Table2.column2...
FROM Table1
LEFT JOIN Table2

 ON Table1.common_field = Table2.common_field;

 Example : For above given two tables namely Student and City, we can apply Left
join. It will Return all records from the left table, and the matched records from the
right table using the common column cid. The query will be

 SELECT *
 FROM Student Left Join City on Student.cid=City.cid

The result will be

sid cid sname cid cname

1 101 Ram 101 Pune

2 101 Shyam 101 Pune

3 102 Seeta 102 Mumbai

4 NULL Geeta NULL NULL

Database Management Systems 2 - 42 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

3) Right Join(Outer Join) :

 The SQL RIGHT JOIN returns all rows from the right table, even if there are no
matches in the left table.

 This means that if the ON clause matches 0 (zero) records in the left table; the join
will still return a row in the result, but with NULL in each column from the left
table.

 This means that a right join returns all the values from the right table, plus matched
values from the left table or NULL in case of no matching join predicate.

 It can be represented as follows :

 Syntax : The basic syntax of a RIGHT JOIN is as follow -
 SELECT Table1.column1, Table2.column2...
 FROM Table1
 RIGHT JOIN Table2
 ON Table1.common_field = Table2.common_field;

 Example : For above given two tables namely Student and City, we can apply Right
join. It will return all records from the right table, and the matched records from the
left table using the common column cid. The query will be

 SELECT *
 FROM Student Right Join City on Student.cid=City.cid

The result will be –

sid cid sname cid cname

1 101 Ram 101 Pune

2 101 Shyam 101 Pune

3 102 Seeta 102 Mumbai

NULL NULL NULL 103 Chennai

4) Full Join (Outer Join) :

 The SQL FULL JOIN combines the results of both left and right outer joins.

 The joined table will contain all records from both the tables and fill in NULLs for
missing matches on either side.

Database Management Systems 2 - 43 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 It can be represented as,

 Syntax : The basic syntax of a FULL JOIN is as follows :

 SELECT Table1.column1, Table2.column2...

 FROM Table1 FULL JOIN Table2 ON Table1.common_field = Table2.common_field;

The result will be -

 Example : For above given two tables namely Student and City, we can apply full
join. It will return returns rows when there is a match in one of the tables using the
common column cid. The query will be -

 SELECT *

 FROM Student Full Join City on Student.cid=City.cid

The result will be -

sid cid sname cid cname

1 101 Ram 101 Pune

2 101 Shyam 101 Pune

3 102 Seeta 102 Mumbai

4 NULL Geeta NULL NULL

NULL NULL NULL 103 Chennai

 2.21 Views SPPU : July-18, Oct.-18, (In Sem), Nov.-19, Marks 8

 Views in SQL are kind of virtual tables.

 A view also has rows and columns as they are in a real table in the database.

 We can create a view by selecting fields from one or more tables present in the
database.

 A view can either have all the rows of a table or specific rows based on certain
condition.

Database Management Systems 2 - 44 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Creating View

We can create a view using CREATE VIEW statement. The syntax is

 CREATE VIEW name_of_view AS

 SELECT column1,column2,…

 FROM table_name1,table_name2,…

 WHERE condition;

Example

i) Creating a view using single table : Consider table Empolyee and create a view
EmployeeDetails whose Salary is < 10000

EmpID EName Salary

101 Archana 20000

102 Madhura 5000

103 Poonam 8000

104 Sharda 15000

105 Monika 7000

CREATE VIEW EmployeeDetails(EmpID, EName) AS

SELECT E.EmpID, E.EName

FROM Employee E

WHERE E.Salary > 10000

The Output will be -

EmpID EName

102 Madhura

103 Poonam

105 Monika

ii) Creating a view from multiple table : In this example we will create a view from
two tables Employee and Department.

Database Management Systems 2 - 45 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Employee

EmpID EName Salary

101 Archana 20000

102 Madhura 5000

103 Poonam 8000

104 Sharda 15000

105 Monika 7000

Department

EmpID DName

101 Accounts

104 Sales

105 Sales

Now we need to create a view named Employee_dept_Details in which the names and
salary of employees belonging to Sales department is displayed. The SQL statement will
then be –
CREATE VIEW Employee_dept_Details(EName,Salary) AS
 SELECT E.EName,E.Salary
 FROM Employee E, Department D
 WHERE E.EmpID=D.EmpID AND D.DName=’Sales’

The output will be

EName Salary

Sharda 15000

Monika 7000

View Update

 The SQL UPDATE VIEW command can be used to modify the data of a view.

 All views are not updatable. So, UPDATE command is not applicable to all views.

 An updatable view is one which allows performing a UPDATE command on itself
without affecting any other table.

Database Management Systems 2 - 46 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Syntax for updating view
 UPDATE < view_name >
 SET<column1>=<value1>,<column2>=<value2>,....
 WHERE <condition>;

 Example
 UPDATE view Employee_dept_Details
 SET Salary=1000
 WHERE EName='Monika';
 This view can be viewed by using following query
 SELECT * FROM Employee_dept_Details;

Rules for updating the views

The view can be updated in following conditions :

(1) The view can be defined based on one and only one table.

(2) The SELECT statement should not have DISTINCT keyword.

(3) The view should not have all NOT NULL values.

(4) The view should not be created from nested and complex queries.

(5) The SELECT statement which is used to create the view should not include
GROUP BY clause or ORDER BY clause.

(6) The view should not have any field made out of aggregate functions.

(7) Any selected output fields of the view must not use constants, strings or value
expressions.

Dropping View

For deleting a view, the DROP command is used.

Syntax

DROP VIEW view_name;

Example

DROP VIEW Employee_dept_Details;

Difference between View and Table

 Table is a database object that contains the data in row and column form. View is
also database object and it is virtual table which is built on the top of the other
tables.

 The table contains the data while view does not hold data itself.

 A table is designed with a limited number of columns and an unlimited number of
rows while a view is designed as a virtual table that is extracted from a database.

Database Management Systems 2 - 47 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 2.21.1 Consider following company database :

EMP(Name, SSn, Salary, Supersn, dno)

DEPT (dnum, dname, mgrssn)

DEPT_LOC (dnum, dlocation)

PROJECT(Pname, Pnumber, Plocation, dnum)

WORKS_ON(Essn, dept_name, sex)

Write SQL queries for the following:

i) Retrieve the names of all employees who work in the department that has the employee

with the highest salary among all employees.

ii) Retrieve the names of employees who make atleast 10000 more than the employee who

is paid the least in the company.

iii) A view that has the employee name, supervisor name and employee salary for each

employee who works in the Research' department.

iv) A view that has the project name, controlling department name, number of employees

and total hours worked per week on the project for each project with more than one

employee working on it.

Solution : (i)

SELECT Name FROM EMP WHERE dno =
 (SELECT dno FROM EMP WHERE Salary =
 (SELECT MAX(Salary) FROM EMP))

 (ii)

SELECT Name FROM EMP WHERE Salary >= 10000 +
(SELECT MIN(Salary) FROM EMP)

(iii)

CREATE VIEW RESEARCH_EMPLOYEE_INFO (Lname, Fname,Supervisor,Salary) AS
SELECT E.Lname,E.Fname,S.Lname,E.Salary FROM
EMPLOYEE E, EMPLOYEE S, DEPARTMENT D
WHERE Dname ='Reasearch' AND
D.Dnumber=E.Dno AND E.super_ssn =S.ssn;

(iv)

CREATE VIEW PROJECT_INFO AS
SELECT Pname,Dname,COUNT(WO.Essn),SUM(WO.Hours)
FROM PROJECT P, DEPARTMENT D, WORKS_ON WO
WHERE
P.Dnum = D.Dnumber AND
P.Pnumber = WO.Pno GROUP BY Pno
HAVING COUNT(WO.Essn)>1

Database Management Systems 2 - 48 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Review Question

1. What is the use of database view ? What are the mandatory requirements of updating the
values in view ? Explain with example. SPPU : Oct.-18, (In Sem), Marks 5

 2.22 Examples Based on SQL

 Example 2.22.1 For the following database, identify primary key and foreign key where-ever

applicable and solve the given queries in SQL.

Item (ino, description, unit_price)

Supplier (sno, sname, address)

Supplied (sno, ino, sdate, qty, per_unit_discount)

1. Find supplier name for the suppliers who supply every item.

2. Find distinct item names for the items supplied with total discount > 500.

3. Pair of supplier names supplying same items on same dates.
Solution :

 The primary key for Item table is ino.
 The primary key for supplier table is sno
 The primary key for supplied table is (sno,ino)

1) Find supplier name for the suppliers who supply every item.

SELECT S.sname
FROM Supplier S
WHERE NOT EXISTS (
 (SELECT * FROM Item I
 WHERE NOT EXISTS
 (SELECT *
 FROM Supplied SP
 WHERE SP.sno = S.sno
 AND SP.ino=I.ino)
)

2) Find distinct item names for the items supplied with total discount > 500.

SELECT DISTINCT description
 FROM Item, Supplied
 WHERE Item.ino=Supplied.ino
 AND Supplied.per_unit_discount >500

3) Pair of supplier names supplying same items on same dates.

SELECT sname
FROM Supplier
WHERE Supplied.sno=Supplier.sno
 AND
 Item.ino=Supplied.ino

Database Management Systems 2 - 49 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 2.22.2 Write SQL statements for the following (any five)

Consider the following database

pilot (pid, pname)

flight (fid, ftype, capacity)

route (pid, fid, from_city, to_city)

i) List the details of flights having capacity more than 300.

ii) List the flights between 'Surat' and 'Mumbai'.

iii) List the names of the pilots who fly from 'Pune'.

iv) List the route on which, pilot named 'Mr Kapoor' flies

v) List the pilots whose names, starts with letter 'A' %' but does not end with letter 'A'.

vi) List the name of pilots who fly 'boing 737' type of flights.
Solution :

(i) List the details of flights having capacity more than 300.

SELECT * FROM flight
WHERE capacity>300

(ii) List the flights between 'Surat' and 'Mumbai'.

SELECT fid
FROM flight, route
WHERE
filight.fid=route.fid AND
route.from_city=’Surat’ AND route.to_city=’Mumbai’;

(iii) List the names of the pilots who fly from 'Pune'.

SELECT pname
FROM pilot,route
WHERE pilot.pid=route.pid
AND route.from_city=’Pune’;

(iv) List the route on which, pilot named 'Mr Kapoor' flies.

SELECT from_city, to_city
FROM route, pilot
WHERE pilot.pid=route.pid
AND pilot.pname=’Mr.Kapoor’;

(v) List the pilots whose names, starts with letter 'A' %' but does not end with letter 'A'.

SELECT pname
FROM pilot
WHERE pname LIKE 'A%' MINUS
SELECT pname FROM pilot
WHERE pname LIKE '%A';

Database Management Systems 2 - 50 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(vi) List the name of pilots who fly 'boing 737' type of flights.

SELECT pname
FROM pilot, flight, route
WHERE flight.ftype = 'boing 737' AND
pilot.pid = route.pid AND
route.fid = flight.fid;

 Example 2.22.3 Consider the relation Database.

Person (SSN, Name, city)

Car (License_no, year, Model, SSN)

Accident(drive_no, SSN, license_no, accidentyear, damage_Amt)

Query :

1. Find out total no of cars that had accident in 1988.

2. Find the Name of driver who did not have an accident in 'Delhi'.

3. Find the car, who don't have total damage of more than ` 1000.

4. Find the cars sold in 2006 and whose owner are from 'Vadodara'

5. How many different models of car are used by 'Mr.abc'

6. Find the lucky persons who have not met any accident yet.
Solution :

1. Find out total no of cars that had accident in 1988.

SELECT count(License_no)
FROM Car, Accident
WHERE Acccident.accidentyear=1988

2. Find the Name of driver who did not have an accident in 'Delhi'.

SELECT Name
FROM Person,Accident
WHERE Person.SSN=Accident.SSN AND Peson.city<> ’Delhi’

3. Find the car, who don't have total damage of more than ` 1000.

SELECT License_no
FROM Car, Accident
WHERE Accident.damage_amt<1000 AND
Car.License_no=Accident.licence_no;

4. Find the cars sold in 2006 and whose owner are from 'Vadodara'

SELECT license_no
FROM Car, Person
WHERE Car.SSN = Person. SSN AND
Car.year = 2006 and Person.city = 'Vadodara';

Database Management Systems 2 - 51 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

5. How many different models of car are used by 'Mr.abc'

SELECT count(model)
FROM Car, Person
WHERE Car.SSN = Person. SSN AND
Person.Name = 'Mr.abc';

6. Find the lucky persons who have not met any accident yet.

SELECT Name
FROM Person
WHERE person.SSN NOT IN (SELECT SSN FROM Accident);

 Example 2.22.4 We have following relations :

Supplier (S#, sname, status, city)

Parts (P#, pname, color, weight, city)

SP(S#, P#, quantity)

Answer the following queries in SQL,

i) Find name of supplier for city = 'Delhi'.

ii) Find suppliers whose name start with 'AB'.

iii) Find all suppliers whose status is 10, 20 or 30.

iv) Find total number of city of all suppliers.

v) Find s# of supplier who supplies 'red' part.

vi) Count number of supplier who supplies 'red' part.

vii) Sort the supplier table by sname.

 Solution : i) Find name of supplier for city = 'Delhi'.

SELECT sname
FROM Supplier
WHERE city='Delhi'

ii) Find suppliers whose name start with 'AB'.

SELECT sname
FROM Supplier
WHERE sname='AB%'

iii) Find all suppliers whose status is 10, 20 or 30.

SELECT sname
FROM Supplier
WHERE status BETWEEN 10 AND 30

iv) Find total number of city of all suppliers.

SELECT count(*) FROM (SELECT DISTINCT CITY FROM Supplier);

Database Management Systems 2 - 52 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

v) Find s# of supplier who supplies 'red' part.

SELECT DISTINCT supplier.S#
FROM Supplier,Parts, SP
WHERE Supplier.S# = SP.S#
AND SP.P# = Parts.P# AND Parts.color = ‘red’;

vi) Count number of supplier who supplies 'red' part.

SELECT count(*)
FROM (SELECT DISTINCT Supplier.S#
FROM Supplier,Parts, SP
WHERE Supplier.S# = SP.S#
AND SP.P# = Parts.P# AND Parts.color = ‘red’);

vii) Sort the supplier table by sname.

SELECT *
FROM Supplier
ORDER BY sname;

 Example 2.22.5 We have following relations :

Supplier (S#, sname, status, city)

Parts (P#, pname, color, weight, city)

SP(S#, P#, quantity)

Answer the following queries in SQL,

i) Delete records in supplier table whose status is 40.

ii) Add one field in supplier table.
Solution :

i) Delete records in supplier table whose status is 40.

DELETE FROM Supplier
WHERE status=40

ii) Add one field in supplier table.

ALTER TABLE Supplier
ADD(PhoneNo number);

 Example 2.22.6 We have following relations :

Supplier (S#, sname, status, city)

Parts (P#, pname, color, weight, city)

SP(S#, P#, quantity)

Answer the following queries in SQL,

i) Find name of parts whose color is 'red'.

ii) Find parts name whose weight less than 10 kg.

iii) Find all parts whose weight from 10 to 20 kg.

Database Management Systems 2 - 53 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

iv) Find average weight of all parts.

v) Find S# of supplier who supply part 'p2'.

vi) Find name of supplier who supply maximum parts.

vii) Sort the parts table by pname.
 Solution :

i) Find name of parts whose color is 'red'.

SELECT pname
FROM Parts
WHERE Parts.color = 'red';

ii) Find parts name whose weight less than 10 kg.

SELECT pname
FROM Parts
WHERE Parts.weight < 10;

iii) Find all parts whose weight from 10 to 20 kg.

SELECT pname, weight
FROM Parts
WHERE Parts.weight BETWEEN 10 AND 20;

iv) Find average weight of all parts.

SELECT AVG (weight)
FROM Parts;

v) Find S# of supplier who supply part 'p2'.

SELECT S#
FROM SP
WHERE p# = 'p2';

vi) Find name of supplier who supply maximum parts.

SELECT sname, MAX(quantity)
FROM Supplier, Parts,SP
WHERE Supplier.S# = SP.S#
AND SP.P# = P.P#
GROUP BY sname;

vii) Sort the parts table by pname.

SELECT *
FROM Parts
ORDER BY pname;

Database Management Systems 2 - 54 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 2.22.7 We have following relations :
Supplier (S#, sname, status, city)
Parts (P#, pname, color, weight, city)
SP(S#, P#, quantity)
Answer the following query in SQL,
 Delete records in parts table whose color is 'blue'.

Solution : (i) DELETE FROM Parts
 WHERE color=’blue’

 Example 2.22.8 Consider following schema and write SQL for given statements.

student (rollno, name, branch)

exam(rollno, subject_code, obtained_marks, paper_code)

papers(paper_code, paper_satter_name, university)

i) Display name of student who got first class in subject '130703'.

ii) Display name of all student with their total mark.

iii) Display list number of student in each university.

iv) Display list of student who has not given any exam.
Solution :

i) Display name of student who got first class in subject '130703'.

SELECT name
FROM student,exam
WHERE exam.obtained_marks>60 AND exam.subject_code=’130703’ AND
student.rollno=exam.rollno

ii) Display name of all student with their total mark.

SELECT name,SUM(obtained_marks)
FROM student,exam
WHERE student.rollno=exam.rollno

iii) Display list number of student in each university.

SELECT COUNT(Rollno)
FROM student, exam, papers
WHERE student.rollno=exam.rollno AND exam.paper_code=papers.paper_code;

iv) Display list of student who has not given any exam.

SELECT name
FROM student NOT IN
(SELECT rollno
FROM student, exam
WHERE student.rollno=exam.rollno)

Database Management Systems 2 - 55 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 2.22.9 Write down the query for the following table where primary keys are

underlined.

Person(ss#, name, address)

Car(license, year, model)

Accident(date, driver, damage-amount)

Owns(ss#, license)

Log(license, date, driver)

1) Find the total number of people whose cars were involved in accidents in 2009.

2) Find the number of accidents in which the cars belonging to "S.Sudarshan"

3) Add a new customer to the database.

4) Add a new accident recorded for the santro belonging to "KORTH"
Solution :

1) Find the total number of people whose cars were involved in accidents in 2009.

SELECT count(ss#)
FROM person ,owns,accident,log
WHERE person.ss#=owns.ss# AND
owns.licence=log.licence AND
log.driver=accident.driver AND
accident.date >= '01‐jan‐2009' and accident.date < ='31‐dec‐09;

2) Find the number of accidents in which the cars belonging to "S.Sudarshan"

SELECT COUNT(accident.date)
FROM person ,owns,accident,log
WHERE log.date=accident.date AND log.driver=accident.driver AND
own.licence=log.licence AND
person.ss#=own.ss# AND
person.name = 's.sudarshan';

3) Add a new customer to the database.

INSERT INTO person (ss#, name, address) values (101, 'Madhav', 'Pune');
INSERT INTO owns (ss#, license) values (101, 'L101');
INSERT INTO car (license, year, model) values ('L101', 2017, 'Honda');
INSERT INTO log (license, date, driver) values ('L101', NULL, 'Shankar');

4) Add a new accident recorded for the santro belonging to "KORTH"

INSERT INTO accident (date, driver, damage‐amount) VALUES ('31‐Dec‐2016’,’Shankar’,10000);
INSERT INTO log (license, date, driver) VALUES (‘L111’,'31‐Dec‐2016’,’Shankar’);
INSERT INTO car (license, year, model) VALUES (’L111’,'2005','SANTRO');
INSERT INTO person (ss#, name, address) VALUES (111, 'Korth', ‘Mumbai’);
INSERT INTO owns (ss#, license) VALUES (111, 'L111');

Database Management Systems 2 - 56 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 2.22.10 Consider the employee data.Give an expression in SQL for the following

query :

Employee(employee_name, street,city)

Works(employee_name,company_name,salary)

Company(company_name,city)

Manages(employee_name,manager_name)

1) Find the name of all employees who work for State Bank.

2) Find the names and cities of residence of all employees who work for State Bank.

3) Find all employee in the database who do not work for State Bank.

4) Find all employee in the database who earn more than every employee of UCO bank.
Solution :

1) Find the name of all employees who work for State Bank.

SELECT employee_name
FROM Works
WHERE company_name=’State Bank’;

2) Find the names and cities of residence of all employees who work for State Bank.

SELECT employee_name,city
FROM Employee, Works
WHERE company_name=’State Bank’ AND
Works.employee_name=Employee.employee_name;

3) Find all employee in the database who do not work for State Bank.

SELECT employee_name
FROM Works
WHERE company_name< > ’State Bank’;

4) Find all employee in the database who earn more than every employee of UCO bank.

SELECT employee_name from Works
WHERE salary>(SELECT MAX(salary) FROM Works
WHERE company_name='UCO bank');

 Example 2.22.11 Consider following schema and write SQL for given statements.

Student(Rollno,Name,Age,Sex,City).

Student_marks(Rollno,Sub1,Sub2,Sub3,Total,Average)

Write query to

i) Calculate and store total and average marks from sub1, sub2 and sub3.

ii)Display name of students who got more than 60 marks in subject Sub1.

iii)Display name of students with their total and average marks.

iv)Display name of students who got equal marks in subject sub2.

Database Management Systems 2 - 57 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

i) Calculate and store total and average marks from sub1, sub2 and sub3.

UPDATE Student_marks
SET Total=sub1+sub2+sub3,
Average= (sub1+sub2+sub3)/3;

ii) Display name of students who got more than 60 marks in subject Sub1.

SELECT Name
FROM Student, Student_marks
WHERE Student.Rollno=Student_marks.Rollno AND Student_marks.sub1>60

iii) Display name of students with their total and average marks.

SELECT Name, Total, Average
FROM Student, Student_marks
WHERE Student.Rollno=Student_marks.Rollno

iv) Display name of students who got equal marks in subject sub2.

SELECT Name
FROM Student S, Student_marks SM1, Student_marks SM2
WHERE S.Rollno=SM1.Rollno AND SM1.sub2=SM2.sub2;

 Example 2.22.12 We have following relations.

EMP (empno, ename, jobtitle, manager no, hiredate, sal, comm, dept no)

DEPT (dept no, dname, loc)

i) The employees who are getting salary greater than 3000 for those persons belongings to

the department 20

ii) Employees who are not getting any commission.

iii) Find how many job titles are available in employee table.

iv) Display total salary spent for each job category.

v) Display number of employees working in each department and their department name.

vi) List ename whose manager is NULL.

vii) List all employee names and their salaries, whose salary lies between 1500/- and 3500/-

both inclusive.

Solution : i) The employees who are getting salary greater than 3000 for those persons

belongings to the department 20

SELECT ename
FROM EMP
WHERE EMP.sal>3000 AND EMP.dept_no=20

Database Management Systems 2 - 58 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

ii) Employees who are not getting any commission.

SELECT ename
FROM EMP
WHERE EMP.comm IS NULL;

iii) Find how many job titles are available in employee table.

SELECT count(jobtitle)
FROM EMP

iv) Display total salary spent for each job category.

SELECT ename,SUM(sal)
FROM EMP
GROUP BY jobtitle;

v) Display number of employees working in each department and their department name.

SELECT COUNT(EMP.eno), DEPT.dname
FROM EMP, DEPT
WHERE EMP.dept_no=DEPT.dept_no
GROUP BY DEPT.dept_no;

vi) List ename whose manager is NULL.

SELECT ename
FROM EMP
WHERE manager_no IS NULL;

vii) List all employee names and their salaries, whose salary lies between 1500/- and 3500/-

both inclusive.

SELECT ename, sal
FROM EMP
WHERE sal>=1500 AND sal<=3500;

 Example 2.22.13 We have following relations.

EMP (empno, ename, jobtitle, manager no, hiredate, sal, comm, dept no)

DEPT (dept no, dname, loc)

Answer the following queries in SQL

i) Find the employees working in the department 10, 20, 30 only.

ii) Find employees whose names start with letter A or letter a.

iii) Find employees along with their department name.

iv) Find employees whose manager is KING.

v) Find the employees who are working in smith's department.

vi) Find the employees who get salary more than Allen's salary.

vii) Display employees who are getting maximum salary in each department.

Database Management Systems 2 - 59 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution : i) Find the employees working in the department 10, 20, 30 only.

SELECT empno
FROM EMP
WHERE dept_no BETWEEN 10 AND 30

ii) Find employees whose names start with letter A or letter a.

SELECT ename
FROM EMP
WHERE ename=’A%’ OR ename=’a%’;

iii) Find employees along with their department name.

SELECT EMP.ename,DEPT.dname
FROM EMP, DEPT
WHERE EMP.dept_no=DEPT.dept_no ;

iv) Find employees whose manager is KING.

SELECT ename
FROM EMP
WHERE managerno = (SELECT empno FROM EMP WHERE ename=’KING’);

v) Find the employees who are working in smith's department.

SELECT ename
FROM EMP,DEPT
WHERE EMP.dept_no=DEPT.dept_no AND ename=’Smith’;

vi) Find the employees who get salary more than Allen's salary.

SELECT ename
FROM EMP
WHERE sal> (SELECT sal FROM EMP WHERE ename=’Allen’);

vii) Display employees who are getting maximum salary in each department.

SELECT ename, MAX(sal)
FROM EMP
GROUP BY dept_no;

 Example 2.22.14 Write queries for the following table.

T1 (Empno, Ename, Salary, Designation),

T2 (Empno, Deptno.)

i) Display all rows for salary greater than 5000

ii) Display the deptno for the ename='shyam'.

iii) Add a new column deptname in table T2.

iv) Change the designation of ename='ram' from 'clerk' to 'senior clerk'.

v) Find the total salary of all the rows.

vi) Display Empno, Ename, Deptno and Deptname.

vii) Drop the table T1.

Database Management Systems 2 - 60 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution : i) Display all rows for salary greater than 5000

SELECT *
FROM T1
WHERE Salary>5000

ii) Display the deptno for the ename='shyam'.

SELECT deptno
FROM T1,T2
WHERE T1.Empno=T2.Empno AND T1.Ename=’shyam’;

iii) Add a new column deptname in table T2.

ALTER TABLE T2
ADD (deptname VARCHAR(20));

iv) Change the designation of ename='ram' from 'clerk' to 'senior clerk'.

UPDATE T1
SET T1.designation=’Senior Clerk’
WHERE T1.ename=’ram’;

v) Find the total salary of all the rows.

SELECT SUM(Salary)
FROM T1;

vi) Display Empno, Ename, Deptno and Deptname.

SELECT E.Empno, E.Ename, D.Deptno, D.Deptname
FROM T1 E, T2 D
WHERE E.Empno=D.Empno;

vii) Drop the table T1.

DROP Table T1;

 Example 2.22.15 Solve following queries with following table, where underlined attribute is

primary key.

primery key.

Person(SS#, name, address)

Car(license, year, model)

Accident(date, driver,damage-amount)

Owns(SS#,license)

Log(licence, date, driver)

i) Find the name of person whose license number is '12345'.

ii) Display name of driver with number of accidents done by that driver.

iii) Add a new accident by 'Ravi' for 'BMW' car on 01/01/2013 for damage amount of

 1.5 lakh rupees.

Database Management Systems 2 - 61 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

i) Find the name of person whose license number is '12345'.

SELECT name
FROM Person, Owns,Car
WHERE Person.SS#=Owns.SS# AND
Car.license=Owns.license AND
Car.license=’12345’;

ii) Display name of driver with number of accidents done by that driver.

SELECT driver,COUNT(*)
FROM Accident
GROUP BY driver

iii) Add a new accident by 'Ravi' for 'BMW' car on 01/01/2013 for damage amount of 1.5 lakh

rupees.

INSERT INTO Person (SS#, name, address) VALUES(111,’Ravi’,’Mumbai’);
INSERT INTO Car (license,year,model) VALUES(‘L111’,’2008,’BMW’);
INSERT INTO Owns(SS#, license) VALUES(111, ‘L111’);
INSERT INTO Accident(‘01/01/2013’,’Ravi’,150000);
INSERT INTO Log(‘L111’, ‘01/01/2013’,’Ravi’);

 Example 2.22.16 For Supplier - Parts database

Supplier(S#, sname, status, city)

Parts(P#, pname,color,weight,city)

SP(S#, P#, quantity)

Answer the following queries in SQL.

i) Display the name of supplier who lives in 'Ahemdabad'.

ii) Display the parts name which is not supplied yet.

iii) Find all suppliers whose status is either 20 or 30.
Solution :

i) Display the name of supplier who lives in 'Ahemdabad'.

SELECT sname
FROM Supplier
WHERE city=’Ahemdabad’;

ii) Display the parts name which is not supplied yet.

SELECT pname
FROM Parts, SP
WHRE SP.P# <> Parts.P#

Database Management Systems 2 - 62 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

iii) Find all suppliers whose status is either 20 or 30.

SELECT sname
FROM Supplier
WHERE status = 20 or status = 30;

 Example 2.22.17 For Supplier - Parts database
Supplier(S#, sname, status, city)
Parts(P#, pname,color,weight,city)
SP(S#, P#, quantity)
Answer the following queries in SQL.
i) Find the name of parts having 'Red' colour.
ii) Delete parts whose weight is more than 100 gram.
iii) Count how many times each supplier has supplied part 'P2'.
iv) How much times shipment is for more than 100 quantities ?

Solution :

i) Find the name of parts having 'Red' colour.

SELECT pname
FROM Parts
WHERE color=’Red’;

ii) Delete parts whose weight is more than 100 gram.

DELETE FROM Parts
WHERE weight>100

iii) Count how many times each supplier has supplied part 'P2'.

SELECT S#, COUNT(*)
FROM SP
WHERE P#=’P2’

iv) How much times shipment is for more than 100 quantities?

SELECT S#, COUNT(*)
FROM SP
WHERE quantity>100;

 Example 2.22.18 Consider following schema and write SQL for given statements.

student(RollNo, Name, Age, Sex, City)

Student_marks(RollNo, Sub1, Sub2, Sub3, Total, Average)

Write query to

i) Display name and city of students whose total marks are greater than 225.

ii) Display name of students who got more than 60 marks in each subject.

iii) Display name of city from where more than 10 students come from.

iv) Display a unique pair of male and female students.

Database Management Systems 2 - 63 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

i) Display name and city of students whose total marks are greater than 225.

SELECT name, city
FROM student,student_marks
WHERE student.RollNo = student_marks.RollNo AND student_marks.Total>225

ii) Display name of students who got more than 60 marks in each subject.

SELECT name
FROM student,student_marks
WHERE student.RollNo = student_marks.RollNo AND
student_marks.Sub1>60 OR student_marks.Sub2>60 OR student_marks.Sub3>60;

iii) Display name of city from where more than 10 students come from.

SELECT city
FROM student
WHERE count(RollNo)>10

iv) Display a unique pair of male and female students.

SELECT S1.name
FROM Student S1, Student S2
WHERE S1.Name=S2.Name AND S1.sex=’M’ S2.sex=’F’

 Example 2.22.19 C Write queries for the following tables :

T1 (Empno, Ename, Salary, Designation)

T2 (Empno, Deptno.)

1) Display all the details of the employee whose salary is lesser than 10 K.

2) Display the Deptno in which employee Seeta is working.

3) Add a new column Deptname in table T2.

4) Change the designation of Geeta from 'Manager' to 'Senior Manager'.

5) Find the total salary of all the employees.

6) Display Empno, Ename, Deptno and Deptname

7) Drop the table T1.
Solution :

1) Display all the details of the employee whose salary is lesser than 10 K.

SELECT *
FROM T1
WHERE Salary<10000

2) Display the Deptno in which employee Seeta is working.

SELECT Deptno
FROM T2, T1
WHERE T1.Empno=T2.Empno AND T1.Ename=’Seeta’;

Database Management Systems 2 - 64 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

3) Add a new column Deptname in table T2.

ALTER TABLE T2
ADD (Deptname VARCHAR(20));

4) Change the designation of Geeta from 'Manager' to 'Senior Manager'.

UPDATE T1
SET Designation =’Senior Manager’
WHERE Ename=’Geeta’;

5) Find the total salary of all the employees.

SELECT SUM(Salary)
FROM T1

6) Display Empno, Ename, Deptno and Deptname

SELECT T1.Empno,T1.Ename, T2.Deptno, T2.Deptname
FROM T1, T2

7) Drop the table T1.

DROP TABLE T1

 Example 2.22.20 We have following relations :

EMP(empno, ename, jobtitle, managerno, hiredate, sal, comm, deptno)

DEPT(deptno, dname, loc)

Answer the following queries in SQL.

i) Find the Employees working in the department 10, 20, 30 only.

ii) Find Employees whose names start with letter A or letter a.

iii) Find Employees along with their department name.

iv) Insert data in EMP table.

v) Find the Employees who are working in Smith's department

vi) Update Department name of Department No = 10

vii) Display employees who are getting maximum salary in each department
Solution :

i) Find the Employees working in the department 10, 20, 30 only.

SELECT ename
FROM EMP
WHERE deptno BETWEEN 10 AND 30

ii) Find Employees whose names start with letter A or letter a.

SELECT ename
FROM EMP
WHERE ename=’A%’ OR ename=’a%’;

Database Management Systems 2 - 65 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

iii) Find Employees along with their department name.

SELECT EMP.ename,DEPT.dname
FROM EMP, DEPT
WHERE EMP.deptno=DEPT.deptno ;

iv) Insert data in EMP table.

INSERT INTO EMP(empno, ename, jobtitle, managerno, hiredate, sal, comm, deptno)
VALUES (‘E111’,’AAA’,’Manager’,M123,01-01-2010,20000,2000,’D111’);

v) Find the Employees who are working in Smith's department

SELECT ename
FROM EMP,DEPT
WHERE EMP.deptno=DEPT.deptno AND ename=’Smith’;

vi) Update Department name of Department No = 10

UPDATE DEPT
SET dname=’Accounts’
WHERE deptno=10;

vii) Display employees who are getting maximum salary in each department

SELECT ename, MAX(sal)
FROM EMP
GROUP BY deptno;

 Example 2.22.21 Consider following Hotel database, primary keys are underlined :

hotel(hotel_no,name,type,price)

room(room-no,hotel-no,type,price)

booking(hotel-no,guest-no,date-from,date-to,room-no)

guest(guest-no,name,address)

Give an expression in SQL for each of the following queries

(1) List the names and addresses of all guests in London, alphabetically ordered by name.

(2) List out hotel name and total number of rooms available

(3) List the details of all the rooms at the Grosvenor Hotel, including the name of the guest

staying in the room, if the room is occupied.

(4) List all guests currently staying a the Grosvenor Hotel.

(5) List the rooms that are currently unoccupied at the Grosvenor Hotel.

(6) List the number of rooms in each hotel in London.

(7) List out all guests who have booked room for three or more days.

Database Management Systems 2 - 66 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

(1) List the names and addresses of all guests in London, alphabetically ordered by name.

SELECT name, address
FROM guest
WHERE address LIKE ‘%London%’
ORDER BY name;

(2) List out hotel name and total number of rooms available

SELECT name, COUNT(room-no)
FROM hotel, room
WHERE hotel.hotel_no=room.hotel_no
GROUP by hotel_no;

(3) List the details of all the rooms at the Grosvenor Hotel, including the name of the

guest staying in the room, if the room is occupied.

SELECT r.* FROM Room r LEFT JOIN
 (SELECT g.guestName, h.hotelNo, b.roomNo
 FROM guest g, booking b, hotel h
 WHERE g.guest_no = b.guest_no AND
b.hotel_no = h.hotel_no AND
 h.name= ‘Grosvenor Hotel’ AND
 date_from <= CURRENT_DATE AND
 date_to >= CURRENT_DATE)
AS XXX ON r.hotel_no = XXX.hotel_no AND r.room_no = XXX.room_no;

(4) List all guests currently staying at the Grosvenor Hotel.

SELECT * FROM guest
 WHERE guest_no =
 (SELECT guest_no FROM booking
 WHERE
 date-from <= CURRENT_DATE AND date-to >= CURRENT_DATE AND
 hotel_no =
 (SELECT hotel_no FROM hotel
 WHERE name = ‘Grosvenor Hotel’));

(5) List the rooms that are currently unoccupied at the Grosvenor Hotel.

SELECT (r.hotel_no, r.room_no, r.type, r.price)
FROM room r, hotel h
WHERE r.hotel_no = h.hotel_no AND
h.name = 'Grosvenor Hotel’ AND
NOT EXIST
 (SELECT *
 FROM booking b, hotel h
 WHERE (date_from <= 'CURRENT_DATE’
 AND date_to >= 'CURRENT_DATE')
 AND r.hotel_no=b.hotel_no
 AND r.room_no=b.room_no

Database Management Systems 2 - 67 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 AND r.hotel_no=h.hotel_no
 AND name = 'Grosvenor Hotel');

(6) List the number of rooms in each hotel in London.

SELECT hotel_no, COUNT(room_no) AS count
FROM room r, hotel h
 WHERE r.hotel_no = h.hotel_no AND city = 'London'
 GROUP BY hotel_no;

(7) List out all guests who have booked room for three or more days.

SELECT guest-no, name
FROM guest g ,booking b
WHERE b.date-to Minus b.date-from >=3

 Example 2.22.22 Consider following schema and write SQL for given statements

employee(employee-name,street,city)

works(employee-name, company-name, salary)

company(company-name, city)

manages(employee-name,manager-name)

(1) Find the names of all employees who work for first bank corporation.

(2) Give all employees of first bank corporation a 10-percent raise.

(3) Find the names and cities of residence of all employees who work for first bank

corporation.

(4) Find the names and street addresses, cities of residence of all employees who work for

First Bank Corporation and earn more than $10,000

(5) Find all employees in the database who live in the same cities as the companies for

which they work.

(6) Find all employees in the database who do not work for First Bank Corporation.

(7) Find the company and number of employees in company that has more than 30

employees
Solution :

(1) Find the names of all employees who work for First Bank Corporation.

SELECT employee_name
FROM works
WHERE company_name=’First Bank Corporation’;

(2) Give all employees of First Bank Corporation a 10-percent raise.

UPDATE works
SET salary=salary*1.1
WHERE company_name=’First Bank Corporation’;

Database Management Systems 2 - 68 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(3) Find the names and cities of residence of all employees who work for First Bank

Corporation.

SELECT employee_name,city
FROM employee
WHERE employee_name IN
(SELECT employee_name
FROM works
WHERE company-name=’First Bank Corporation’);

(4) Find the names and Street addresses, cities of residence of all employees who work

for First Bank Corporation and earn more than $10,000

SELECT employee_name,city
FROM employee
WHERE employee_name IN
(SELECT employee_name
FROM works
WHERE company-name=’First Bank Corporation’ AND salary>10000);
OR
SELECT E.employee_name, E.street, E.city
FROM employee as E, works as W
WHERE
E.employee_name=W.employee_name AND
W.company_name=’First Bank Corporation’ AND W.salary>10000

(5) Find all employees in the database who live in the same cities as the companies for

which they work.

SELECT E.employee_name
FROM employee as E, works as W, company as C
where E.employee_name=W.employee_name AND
E.city=C.city AND
W.company_name=C.company_name;

(6) Find all employees in the database who do not work for First Bank Corporation.

SELECT employee_name
FROM works
WHERE company_name <>’First Bank Corporation’;

(7) Find the company and number of employees in company that has more than 30

employees

SELECT company-name,COUNT(employee-name)
FROM employee E, company C,works W
WHERE E.employee-name=W.employee-name AND
W.company-name=C.company-name
HAVING COUNT(employee-name)>30;

Database Management Systems 2 - 69 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 2.22.23 Consider following relations and write SQL queries for given statements

Assume suitable constraints

Instructor(ID, Name, Dept_name, Salary)

Teaches(ID,Course_id, Sec_id, Semester(even/odd), Year)

(1) Write SQL query to create Instructor table

(2) Find the average salary of the instructor in computer department.

(3) Find the number of instructors in each department who teach a course in even semester

of 2016

(4) Find the names of instructor with salary amounts between 30000 and 50000

Solution : (1) Write SQL query to create Instructor table

CREATE TABLE Instructor
(ID CHAR,
Name VARCHAR(20),
Dept_name VARCHAR(15),
Salary numeric(8,2)
);

(2) Find the average salary of the instructor in computer department.

SELECT AVG(Salary)
FROM Instructor
WHERE Dept_name=’Computer’;

(3) Find the number of instructors in each department who teach a course in even
semester of 2016

SELECT COUNT(DISTINCT ID)
FROM Teaches
WHERE Semester=’even’ AND Year=2016

(4) Find the names of instructor with salary amounts between 30000 and 50000

SELECT Name
FROM Instructor
WHERE Salary >=30000 AND Salary <=50000

 Example 2.22.24 Consider following schema and write SQL for given statements

Client_master(clientno,name,address,city,pincode,state,baldue)

Product_master(productno,name,profitpercent,unitmeasure,sellprice,costprice)

Sales_master(Salesmanno,name,address,city,pincode,state,salary,tgtotget,remarks)

(1) Find out the names of all clients

(2) List all the clients who are located in Mumbai

(3) Delete all salesmen from salesman_master whose salaries are equal to ` 3500

(4) Destroy the table client_master along with data

Database Management Systems 2 - 70 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(5) List the names of all clients having ’a’ as the second letter in their names.

(6) Count the number of products having cost price is less than or equal to 500.

(7) Calculate the average, minimum and maximum Sell price of product
Solution :

(1) SELECT name FROM Client_master;
(2) SELECT * FROM Client_master
 WHERE city=’Mumbai’
(3) DELETE FROM Salesman_master
 WHERE salary=3500;

(4) DROP TABLE Client_master;
(5) SELECT name
FROM Client_master
WHERE name like ’_a%’;
(6) SELECT count(productno)
FROM product_master
WHERE costprice <= 500
(7) SELECT AVG(sellprice), MIN(sellprice), MAX(sellprice)
FROM product_master;

 Example 2.22.25 Assume the following table.

Degree (degcode, name, subject)

Candidate (seatno, degcode, name, semester, month, year, result)

Marks (seatno, degcode, semester, month, year, papcode, marks)

[degcode – degree code, name – name of the degree (Eg. MSc.), subject – subject of the

course (Eg. Physis), papcode – paper code (Eg. A1)]

Solve the following queries using SQL;

Write a SELECT statement to display,

(i) all the degree codes which are there in the candidate table but not present in degree table in

the order of degcode.

(ii) the name of all the candidates who have got less than 40 marks in exactly 2 subjects.

(iii) the name, subject and number of candidates for all degrees in which there are less than 5

candidates.

(iv) the names of all the candidate who have got highest total marks in MSc. Maths.
Solution : (i) SELECT C.degcode

FROM Candidate C,
WHERE NOT EXISTS
 (SELECT D.degcode
 FROM Degree D
 WHERE D.degcode=C.degcode)
ORDER by C.degcode

Database Management Systems 2 - 71 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(ii) SELECT C.name
FROM Candidate C, Degree D, Marks M
WHERE
C.seatno=M.seatno AND C.degcode=D.degcode AND C.degcode=M.degcode AND M.marks<40
GROUP BY C.seatno
HAVING count(D.subject)=2;

(iii) SELECT D.name,D.subject,count(*)

FROM degree D, Candidate C
WHERE D.degcode=C.degcode
HAVING(SELECT count(*) FROM Candidate <5);

(iv) SELECT C.name

FROM Candidate C, Degree D, Marks M
WHERE
D.degname=’MSc’ AND D.subject=’Maths’ AND C.degcode=D.degcode AND C.seatno=M.seatno
AND
M.marks= (SELECT max(M.marks) FROM Marks M)

 Example 2.22.26 Consider a student registration database comprising of the below given table

schema.

Student File

Student Number Student Name Address Telephone

Course File

Course Number Description Hours Professor Number

Professor File

Professor Number Name Office

Registration File

Student Number Course Number Date

Consider a suitable sample of tuples / records for the above mentioned tables and write

DML statements (SQL) to answer for the queries listed below.

i) Which courses does a specific professor teach ?

ii) What courses are taught by two specific professors ?

iii) Who teaches a specific course and where is his/her office ?

iv) For a specific student number, in which courses is the student registered and what is his/her

name ?

v) Who are the professors for a specific student ?

vi) Who are the students registered in a specific course ?

Database Management Systems 2 - 72 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

(i)

SELECT P.name,C.description
FROM Professor P, Course C
WHERE P.ProfessorNumber=C.ProfessorNumber
HAVING count(DISTINCT P.name)=2

(ii)

SELECT P.name,C.description
FROM Professor P, Course C
WHERE P.ProfessorNumber=C.ProfessorNumber

(iii)

SELECT P.name,P.office, C.description
FROM Professor P, Course C
WHERE P.ProfessorNumber=C.ProfessorNumber

(iv)

SELECT S.StudentNumber,S.StudentNumber,C.Description
FROM Student S, Course C, Registration R
WHERE S.StudentNumber=R.StudentNumber AND C.CourseNumber=R.CourseNumber

(v)

SELECT S.StudentName, P.Name
 FROM Student S, Course C, Professor P, Registration R
WHERE C.ProfessorNumber=P.ProfessorNumber
 AND C.CourseNumber=R.CourseNumber
 AND S.StudentNumber=R.StudentNumber
 GROUP BY P.ProfessorNumber

(vi)

SELECT S.StudentName, C.Description
FROM Student S, Course C, Registration R
WHERE S.StudentNumber=R.StudentNumber
AND R.CourseNumber=C.CourseNumber
GROUP BY C.CourseNumber

 Example 2.22.27 Consider following RESORT database

RESORT(resortno, resortname, resorttype, resortaddr,resortcity,numsuite)

SUITE (suiteno, resortno, suiteprice)

RESERVATION (reservationno, resorttype, resortaddr, resortcity , numsuite)

VISITOR(visitno, firstname, lastname, visitoraddr)

i) Write the SQL to list full details of all the resorts on Los Angeles.

ii) Write the SQL to list full details of all resorts having number of suites more than 30.

iii) Write the SQL to list visitors in ascending order by firstname.

Database Management Systems 2 - 73 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution : (i) SELECT * FROM RESORT WHERE resortcity =’Los Angeles’;

(ii) SELECT * FROM RESORT WHERE numsuite>30;

(iii) SELECT * FROM VISITOR ORDER BY firstname;

 Example 2.22.28 Consider the following database and answer the queries-

WORKS(Pname,Cname,Salary)

LIVES(Pname, Street,City)

LOCATED_IN(Cname,City)

Write the following queries in SQL :

(i) List the names of the people who work for the company ‘Wipro’ along with cities they live

in.

(ii) Find the names of the persons who do not work for ‘Infosys’

(iii) Find the people whose salaries are more than that of all of the ‘oracle’employees.
(iv) Find the persons who works and lives in the same city.

Solution :

(i) SELECT L.Pname, L.City

 FROM Works W, Lives L

Where W.Cname = "Wipro" and W.Pname = L.Pname;

(ii) SELECT Pname

FROM WORKS

WHERE Cname ! = 'Infoysy';

(iii) SELECT Pname

FROM WORKS

WHERE Salary > ALL

 (SELECT Salary

FROM WORKS

WHERE Cname = "Oracle");

(iv) SELECT W.Pname

FROM WORKS W, LIVES L, LOCATED_IN I

WHERE W.Cname = I.Cname AND W.Pname = L.Pname

AND I.City = L.City

Database Management Systems 2 - 74 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 2.22.29 Write the SQL queries for the following relational schema :
Sailors(Sid, Sname, Rating, Age)
Boats(Bid, Bname,color)
Reserve(Sid, Bid, Day)

 i) Retrieve the Sailor’s name who have reserved red and green boat
 ii) Retrieve the no of boats which are not reserved.
 iii) Retrieve the Sailors name who have reserved boat number 103
 iv) Retrieve the Sailors name who have reserved all boats.

Solution : (i)
SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid=R.sid
 AND R.bid=B.bid
 AND (B.color='red' AND B.color='green')

(ii)
SELECT Sname
FROM Sailors
WHERE Sid NOT IN
 (SELECT Sid
 FROM Reserve, Sailors
 WHERE Reserve.sid=Sailors.sid)

(iii)
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103
(iv) SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ((SELECT B.bid
 FROM Boats B)
 EXCEPT
 (SELECT R.bid
 FROM Reserves R
WHERE R.sid=S.sid))

 Example 2.22.30 Write SQL queries for the following relational schema

CUSTOMER(CID, CNAME,EMAIL,ADDR,PHONE)

ITEM(ITEM_NO,ITEM_NAME,PRICE, BRAND)

SALES(CID,ITEM_NO,#ITEMS, AMOUNT,SALE_DATE)

SUPPLIER(SID, SNAME, SPHONE, SADDR)

SUPPLY(SID, ITEM_NO, SUPPLY_DATE, QTY)

(i) List the items purchased by Customer ‘Prasanth’

(ii) Retrieve items supplied by all suppliers starting from 1st Jan 2019 to 30th Jan 2019.

Database Management Systems 2 - 75 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(iii) Get the details of customers whose total purchase of items worth more than 5000 rupees.

(iv) List total sales amount, total items, average sale amount of all items.
(v) Display customers who have not purchased any items

Solution : (i)
SELECT ITEM_NAME
FROM ITEM I,CUSTOMER C and SALES S
WHERE C.CID= S.CID AND I.ITEM_NO = S.ITEM_NO AND C.CNAME=’Prasanth’

(ii)
SELECT ITEM_NAME
FROM ITEM, SUPPLIER, SUPPLY
WHERE ITEM.ITEM_NO=SUPPLY.ITEM_NO AND
AND SUPPLY.SID=SUPPLIER.SID AND
SUPPLY.SUPPLY_DATE ‘1 JAN 2019’ AND ’30 JAN 2019’

(iii)

SELECT CID, CNAME, EMAIL,ADDR,PHONE
FROM CUSTOMER,SALES
WHERE CUSTOMER.CID=SALES.CID AND SALES.AMOUNT>=5000

(iv)

SELECT
 SUM(AMOUNT),#item,AVG(AMOUNT)
FROM SALES
WHERE SALES.ITEM_NO = ITEM.ITEM_NO

(v)

SELECT CID, CNAME, EMAIL,ADDR,PHONE
FROM CUSTOMER
WHERE CID
NOT IN (
SELECT CID
FROM SALES
)

 Example 2.22.31 Consider following database

Student(Roll_No, Name, Address)

Subject(Sub_code, Sub_name)

Marks(Roll_no, Sub_code, Marks)

Write following queries in SQL

1) Find average marks of each student along with the name of student

2) Find how many students have failed in the subject “DBMS”

 (note:failed means obtained less than 40 marks)

Database Management Systems 2 - 76 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution : (1)

SELECT Name, AVG(Marks)
FROM Student,Marks
WHERE Student.Roll_No=Marks.Roll_No

(2)

SELECT COUNT(Roll_NO)
FROM Subject,Marks

WHERE Marks.Marks<40 AND Subject.sub_code=Marks.Sub_code AND Sub_name=”DBMS”

 Example 2.22.32 Consider the following six relations for an order processing database

application in a company.

customer (cust #, cname, city)

order (order #, odate, cust #, ord-Amt)

order-item (order #, item #, Qty)

item (item #, unt-price)

shipment (order #, warehouse #, ship-date)

Warehouse (warehouse #, city)

Here, old-Amt refers to total amount of an order; odate is the date the order was placed;

ship-date is the date an order is shipped from the warehouse. Assume that an order can be

shipped from several warehouses.

Specify the following in SQL queries

i) List the order # and ship-date for all orders shipped from warehouse number 'W2'.

ii) List the warehouse information from which the customer named 'Jose Lopez' was supplied

his orders.

iii) List the orders that were not shipped within 30 days of ordering.

iv) List the order # for orders that were shipped from all warehouses that the company has in

New York.
Solution:

i)

 SELECT Order#, ship-date
 FROM shipment
 WHERE warehouse# = 'W2'

ii)

SELECT order.order#, shipment.warehouse#
FROM customer, shipment, order
 WHERE order.order# = shipment.order#

 AND customer.cust# = order.cust#
 AND customer.cname = 'Jose Lopez'

Database Management Systems 2 - 77 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

iii)

 SELECT order#, odate, cust#, ord-Amt
 FROM order, shipment,
 WHERE order.order#=shipment.order# AND shipment.ship-date>30

iv)

 SELECT shipment.order#
 FROM shipment, Warehouse

 WHERE shipment.warehouse# = Warehouse.warehouse#
 AND Warehouse.city = "New York"

 Example 2.22.33 Consider the following database schema :

 Physician (reg_no, name, tel_no, city)

 Patient(p_name, street, city)

 Visit (p_name, reg_no, date_of_visit, fee)

 Write SQL queries for following requirements (any two)

i) Find the name and city of patients who visited a physician on 13 July 2017.

ii) Get the name of the physician and the total no. of patients visited him.

iii) Get the details of date wise fees collected at clinic.
 SPPU : Aug 17, End Sem, Marks 5

Solution :

(i) SELECT p_name, city
 FROM Patient, Visit

 WHERE Patient.p_name=Visit.p_name AND date_of_visit=’13-July-2017’
(ii) SELECT name, count(*)
 FROM Physician, Visit

 WHERE Physician.reg_no = Visit.reg_no
 GROUP BY Physician.reg_no
(iii) SELECT *

 FROM Visit
 GROUP BY date_of_visit

 Example 2.22.34 Consider insurance database with following schema :

 person (driver-id, name, address)

 car (license, model, year)

 accident (report-no, date, location)

 owns (driver-id, license)

 participated (driver-id, car, report-no, damage-amount)

Database Management Systems 2 - 78 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Write a query in SQL for following requirements (any two) :

i) Find the total no. of people who owned cars that were involved in accidents in 2016.

ii) Retrieve the name of person whose address contains Pune.
iii) Find the name of persons having more than two cars SPPU : Dec 17, End Sem, Marks 5

Solution :

i) SELECT count(DISTINCT name)
 FROM person, accident, participated

 WHERE accident.report-no = participated.report-no AND participated.driver-id =
 person.driver-id AND date BETWEEN DATE ‘2016-00-00’ AND DATE ‘2016-12-31’
ii) SELECT name

 FROM person
 WHERE address LIKE %Pune’
iii) SELECT name

 FROM person
 WHERE 2 <
 (SELECT count(*)

 FROM person,car,owns
 WHERE car.license = owns.license AND owns.driver-id=person.driver-id

 Example 2.22.35 Schema definition for supplier-and-parts database.

Supplier = (supplier_number, supplier_name, status, city)

Parts = (part_number, part_name, colour, weight, city)

Shipments = (supplier_number, part_number, quantity)

Write SQL query for following requirements (any 2).

i) Find shipment information (supplier_number, supplier_name, part_number, part_name,

quantity) for those having quantity less than 150.

ii) List supplier_number, suppler_name, part_number, part_name for those suppliers who

made shipment of parts whose quantity is larger than the average quantity.

iii) Find aggregate quantity of part_number 'A692' of colour 'GREEN' for which shipment

made by supplier_number who reside in 'MUMBAI'
 SPPU : May 18, End Sem, Marks 5

Solution :

i) SELECT supplier_number,supplier_name,part_number,part_name,quantity
 FROM Supplier, Parts, Shipments

 WHERE Supplier.supplier_number = Shipments.supplier_number AND Parts.part_number
 =Shipments.part_number
 AND Shipments.quantity<150

ii) SELECT supplier_number, suppler_name, part_number, part_name
 FROM Supplier, Parts
 WHERE Supplier.supplier_number = Shipments.supplier_number AND Part.part_number=

Database Management Systems 2 - 79 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Shipments.part_number AND
 Shipments.quantity>(SELECT AVG(quantity) FROM Shipments)
iii) SELECT COUNT(part_number)

 FROM Parts, Supplier, Shipments
 WHERE Supplier.supplier_number = Shipments.supplier_number AND Part.part_number=
 Shipments.part_number AND

 Parts.part_number = ‘A692’ AND Parts.colour=’GREEN’ AND Supplier.city=’MUMBAI’

 Example 2.22.36 Consider the following database schema :

Loan (loan_no, Branch_name, Amount)

Borrower (Cust_name, Loan_no).

Write SQL queries for following requirements (any two) :

i) Find all customers who have a loan from bank. Find their names, loan nos. and Loan

amount.

ii) Find names of customers in alphabetical order who have a loan at Pune branch.

iii) Find all loan nos. for loan made at Pune branch with loan amount greater than 20000.

 SPPU : Oct 18, End Sem, Marks 5

Solution :

(i) SELECT Cust_name Loan_no, Amount

 FROM Loan, Borrrower
 WHERE Loan.Loan_no = Borrower.Loan_no
(ii) SELECT Cust_name

 FROM Borrower, Loan
 WHERE Loan.Branch_name = ‘Pune’
 ORDER BY Cust_name ASC

(iii) SELECT Loan_no
 FROM Loan, Borrower
 WHERE Loan.Loan_no = Borrower.Loan_no AND Loan.Branch_name = ‘Pune’ AND

 Loan.Amount>20000

 Example 2.22.37 Consider Employee database with following schema :

Employee(Emp_Id, First_Name, Last_Name, Salary, Joining_Date, Department)

Bonus(Emp_Ref_Id, Bonus_Amount, Bonus_Date)

Designation(Emp_Ref_Id, Emp_Designation, Affected_From)

Write queries in SQL for following requirements (any 2):

i) To fetch the departments that have less than five people in it.

ii) To print the name of employees having the highest salary in each department.

iii) Write an SQL query to print details of the employee who are also Managers.
 SPPU : Dec 18, End Sem, Marks 5

Database Management Systems 2 - 80 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

(i) SELECT Department, COUNT(Emp_Id) as ‘Number of People’

 FROM Employee GROUP BY Department
 HAVING COUNT(Emp_Id) <5
(ii) SELECT E.Department,t.First_Name,t.Salary

 FROM
 (SELECT MAX(Salary) AS TotalSalary, Department FROM Employee GROUP BY Department)
 AS temp

 INNER JOIN ON temp.Department=E.Department AND temp.TotalSalary=E.Salary;
(iii) SELECT DISTINCT E.FIRST_NAME, D.Emp_Designation
 FROM Employee E, Designation D

 WHERE E.Emp_Id = D.Emp_Ref_Id
 AND D.Emp_Designation IN ('Manager');

 Example 2.22.38 Consider following schema :

account (acct-no, branch - name, balance)

Depositor (cust - name, acct - no)

borrower (cust-name, loan-no)

loan (loan - no, branch - name, amount)

Write following queries using SQL (any 2)

i) Find names of all customers who have a loan at the redwood branch.

ii) Find all customers who are having an account and loan or both.

iii) Find average account balance at each branch.
 SPPU : May 19, End Sem, Marks 5

Solution :

(i) SELECT DISTINCT cust-name

 FROM borrower, loan
 WHERE borrower.loan-no = loan.loan-no AND loan.branch-name = ‘redwood’
(ii) SELECT cust-name FROM Depositor

 UNION
 SELECT cust-name FROM borrower
(iii) SELECT branch-name, AVG(balance)

 FROM account
 GROUP BY branch-name

 Example 2.22.39 Consider the following database schema :

Emp(E_number, E_name, Dept_no)

Dept(Dept_no, Dept_name)

Address(Dept_name, Dept_location)

Database Management Systems 2 - 81 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Write SQL queries for following requirements (any 2)

i) Display the name of department for the employee having E_number 'E1011'.

ii) Display the location of department where employee 'Ramesh' is working.

iii) Display total no. of employees working in each department.
 SPPU : Oct 19, In Sem, Marks 5

Solution :

i) SELECT Dept-name

 FROM Dept, Emp

 WHERE Dept.Dept_no = Emp.Dept_no AND E_number =’E1011’

ii) SELECT Dept_location

 FROM Address A, Dept D,Emp E

 WHERE E.E_name =’Ramesh’ AND E.Dept_no= D.Dept_no AND

 Dept.Dept_name=A.Dept_name

iii) SELECT COUNT(Emp_no)

 FROM Emp E, Dept D

 WHERE E.Dept_no = D.Dept_no

 Example 2.22.40 Emp(E_number, E_name, Dept_no)

Dept(Dept_no, Dept_name).

Consider the schema given above. Consider above tables are created without considering the

Dept_no as primary key in Dept table and foreign key in Emp table. Assuming tables are

already created write SQL queries for following requirements.

i) Create primary key in dept table considering above situations.

ii) Create foreign key considering EMP as child table and dept as master table also consider

 the above situation.

iii) Add column salary with appropriate data type in EMP table.
 SPPU : Oct 19, In Sem, Marks 5

Solution :

i) ALTER TABLE Dept
 ADD PRIMARY KEY(Dept_no)
ii) ALTER TABLE Emp

 ADD CONSTRAINT FK_deptno
 FOREIGN KEY (Dept_no) REFERENCES Dept(Dept_no);
iii) ALTER TABLE Emp

 ADD Salary int

Database Management Systems 2 - 82 Structured Query Language

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Notes

(3 - 1)

UNIT - II

3 PL / SQL

Syllabus
Concept of Stored Procedures and Functions, Cursors, Triggers, Assertions, Roles and Privileges.

Contents

3.1 Basics of PL/SQL

3.2 Writing First PL/SQL Script

3.3 Block Structure of PL/SQL

3.4 PL/SQL Data Types

3.5 PL/SQL Variables

3.6 PL/SQL Constants

3.7 Control Statements

3.8 Handling Database Tables using PL/SQL

3.9 Examples on PL/SQL ... Aug.-17, Oct.-18,19, May-19,

 ... Dec.-19, Marks 5

3.10 Concept of Stored Procedures

3.11 Functions ... Aug.-17, Marks 5

3.12 Cursors ... Dec.-17, Marks 5

3.13 Triggers ... Dec.-17, 18, 19, Marks 5

3.14 Assertions

3.15 Roles and Privileges

3.16 Exceptions ... Dec.-18, May-19, Marks 5

Multiple Choice Questions

Database Management Systems 3 - 2 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.1 Basics of PL/SQL

 PL/SQL stands for Procedural Language extensions to the Structured Query
Language (SQL).

 PL/SQL is a combination of SQL along with the procedural features of
programming languages.

 Oracle uses a PL/SQL engine to processes the PL/SQL statements.

 PL/SQL includes procedural language elements like conditions and loops. It allows
declaration of constants and variables, procedures and functions, types and variable
of those types and triggers.

 3.1.1 How to Set Environment for Executing PL/SQL Scripts ?

We need to install Oracle for executing the PL/SQL script. We can install it on Linux
as well as on Windows (32 bit or 64 bit) platform.

For that purpose go to the web site https://www.oracle.com.

On completion of installation, Open command prompt window and issue the
following commands at the prompt
 Set ORACLE-SID=orcl
 sqlplus /as sysdba

The command prompt window will display SQL prompt as follows -

Database Management Systems 3 - 3 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

You can test the Oracle installation by typing the SELECT query as follows.

Then type quit and then exit at the SQL prompt to close this command prompt
window. We can also check the installation is correct or not at GUI level as follows -

Just open the Web browser and type the URL as,

https://localhost:1158/em

Following type of web page appears in your browser.

Database Management Systems 3 - 4 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Username as sys

Password as oracle(you can choose any password of your choice)

Connect as SYSDBA

Click Login button and then the Web page appears as follows -

That it!!. Your Oracle is installed on your machine.

Troubleshooting : Sometimes at the start of installation itself, it gives error about
CREATE file on Command prompt, to resolve this error, just disable your Antivirus
Software during the installation process.

 3.2 Writing First PL/SQL Script

(1) Writing and Executing the PL/SQL script on SQL PLUS

 SQL Plus, which is a command-line interface for executing SQL statement and
PL/SQL blocks provided by Oracle Database.

 Open SQL PLUS command prompt.

 Type user name and password. I am using the user name : sys as sysdba and
password as oracle(This is the password which I set during installation.).

 Then the SQL prompt appears. Now we can execute our PL/SQL code from here.

Database Management Systems 3 - 5 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(2) Writing the PL/SQL script on Oracle SQL Developer

You can write PL/SQL script at the SQL Prompt or you can store the script in separate
file and execute it.

For storing the script in separate file we need to use Oracle SQL Developer.

After installation of Oracle Package, this developer tool comes integrated with it. Click
on it.

Database Management Systems 3 - 6 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Click on File -> New, Following window will appear

Now Enter user name and password as follows. You can give Connection Name of
your choice. Then click Test button. On successful connection we get Success message.
Then Click Connect button.

Database Management Systems 3 - 7 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Now Click on File->New.

Following window appears. Click on SQL File and then Click OK button

Set the filename of your choice. For instance - I have created a PL/SQL file as follows -

The script is as follows -
 SET SERVEROUTPUT ON;
 BEGIN

 DBMS_OUTPUT.put_line('Hello World');
 END;
 /

Database Management Systems 3 - 8 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Explanation of Script

(1) The first line of PL/SQL script is
 SET SERVEROUTPUT ON;

 This allows the user to see the output, when the script is executed on specified
connection.

(2) Then BEGIN statement indicated the beginning of the execution block.

(3) The execution block is within the BEGIN and END statements. You can write any
executable PL/SQL statements here.

(4) For displaying the desired message we use DBMS_OUTPUT.PUT_LINE. The
DBMS_OUTPUT is a built-in package that allows us to display output.

Execution of Script

Click on Execution Script

The window for Select Connection will appear, Select the Connection and click OK
button.

1

2

Click here to
execute the script

Database Management Systems 3 - 9 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The output will be displayed at the bottom of the Editor window as follows

 3.3 Block Structure of PL/SQL

 PL/SQL is a procedural language.

 The code is written in small blocks in PL/SQL.

 Broadly there are two types of blocks -

(1) Anonymous Block

 A block without a name is an anonymous block.

 An anonymous block is not saved in the Oracle Database server, so it is just for one-
time use.

 PL/SQL anonymous blocks are useful for testing purposes.

(2) Named Block
 A PL/SQL block has a name.
 A Function or a Procedure is an example of a named block.
 A named block is saved into the Oracle Database server first and then can be

reused.
 A PL/SQL block consists of three sections : declaration, executable, and exception-

handling sections. In a block, the executable section is mandatory while the
declaration and exception-handling sections are optional. This structure of PL/SQL
block is as follows

 Fig. 3.3.1 Block structure of PL/SQL

Database Management Systems 3 - 10 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

1) Declaration section

A PL/SQL block has a declaration section where you declare variables, allocate
memory for cursors and define data types.

2) Executable section

A PL/SQL block has an executable section. An executable section starts with the
keyword BEGIN and ends with the keyword END. The executable section must have a
least one executable statement, even if it is the NULL statement which does nothing.

3) Exception-handling section

A PL/SQL block has an exception-handling section that starts with the keyword
EXCEPTION. The exception-handling section is where you catch and handle exceptions
raised by the code in the execution section.

 3.4 PL/SQL Data Types

Following are the types of PL/SQL data types
1. Scalar : These data types don’t include any internal components. It includes data

types such as NUMBER, DATE, BOOLEAN, etc.
2. Large Objects (LOB) : This type of data type stores objects that are relatively large

in size and stored separately from other data types such as text, graphic images,
video clips, sound, etc.

3. Composite : These type of data types have internal components that can be
accessed individually. It includes records and collections.

4. Reference : As the name sounds, it includes pointers that refer to the location of the
other data items.

Following are some commonly used data types in PL/SQL

Data Type Description

Numeric Numeric values on which arithmetic operations are performed. It includes
sub types such as number, decimal, real, float, etc.

Character Character values on which character operations such as strings are
performed. It includes sub types such as char, varchar, varchar2, nvarchar2,
etc.

Date and Time This data type is for displaying the date and time values. The default date
format is DD-MM-YY.

Boolean These include logical values on which logical operations are performed. The
logical values are the Boolean values TRUE and FALSE and the value NULL.

Database Management Systems 3 - 11 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Number Number(Precision, Scale). Precision is the total number of digits and scale is
the number of digits to the right of the decimal point. You cannot use
constants or variables to specify precision and scale; you must use integer
literals.

To declare floating-point numbers, for which you cannot specify precision or
scale because the decimal point can float to any position, use the following
form without precision and scale :

NUMBER

The maximum precision that can be specified for a NUMBER value is 38
decimal digits. If you do not specify precision, it defaults to 39 or 40, or the
maximum supported by your system, whichever is less.

Scale, which can range from -84 to 127, determines where rounding occurs.

Float ANSI and IBM specific floating-point type with maximum precision of 126
binary digits (approximately 38 decimal digits).

Integer ANSI and IBM specific integer type with maximum precision of 38 decimal
digits.

Real Floating-point type with maximum precision of 63 binary digits
(approximately 18 decimal digits).

Varchar2 Variable-length character string with maximum size of 32,767 bytes.

Rowid Physical row identifier, the address of a row in an ordinary table.

Blob This data types is used to store large binary objects in the database. Memory
Capacity : 8 to 128 TB.

Clob This data type is used to store large blocks of character data in the database.
Memory Capacity : 8 to 128 TB.

 3.5 PL/SQL Variables

 The variables in PL/SQL are declared in declaration section. The syntax of variable
declaration is as follows -

Syntax

Variable-Name DataType(Precision/Dimension)

Example

 Person_name varchar2(30);

Database Management Systems 3 - 12 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Here Person_name is a variable name and varchar2 is the data type with 30 as
dimension.

 Constraints are associated with the variables defined in the code block. A constraint
is a condition that is placed on the variable. Two commonly used constraints are –
 Constant - This constraint will ensure that the value is not changed after a

value is initially assigned to a variable. If a statement tries to change the
variable value, an error will be displayed.

 Not Null - This constraint will ensure that the variable always contains a
value. If the statement attempts to assign an empty or a null value to that
particular variable, the program will be error prone and will get abnormal
termination of the program or the exception section will execute, if included in
the program code.

 For Example -
 PI constant number(5,2)=3.1415

 Variable Initialization : Variable can be initialized using :=. This sign includes a
‘colon’ with a succeeding ‘equal to’ sign. This particular sign assigns the parameter
on the right hand side of the sign to the parameter or the variable on the left hand
side of the sign.

Programming Example

 SET SERVEROUTPUT ON;
 DECLARE
 x integer := 100;

 y integer := 200;
 z integer;
 t real;

 BEGIN
 z := x + y;
 dbms_output.put_line('Addition of Two numbers: ' || z);

 t := 15.0/3.0;
 dbms_output.put_line('Division of Two numbers: ' || t);
 END;

 /

Database Management Systems 3 - 13 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Following Screenshot demonstrates above program

There are two types of variable scope :

1. Local Variables 2. Global Variables

For example

DECLARE
 - - Global Variables

 a integer := 100;
 b integer := 200;
 dbms_output.put_line('a: ' || a);

 dbms_output.put_line('b: ' || b);
 BEGIN
 - - Local Variables
 c integer := 300;
 d integer := 400;
 dbms_output.put_line('c: ' || c);

 dbms_output.put_line('d: ' || d);
END;
/

This is the output

Database Management Systems 3 - 14 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.6 PL/SQL Constants

Constant is a value that remains unchanged. It is declared using the keyword
CONSTANT. It requires initial value that does not get changed.

Syntax

constant_name CONSTANT datatype := VALUE;

Example

PI CONSTANT NUMBER :=3.1415;

 3.7 Control Statements

The control states determine the flow of execution of PL/SQL block. The control
statements are of two types – conditional statements and loop statements.

 3.7.1 IF Statement

The If-then-else type of statement is used to specify the condition in PL/SQL block.
There are various ways by which the if statement can be written. Their syntaxes are as
given below

(1) Syntax- IF-THEN

IF condition
THEN
Statement: {when condition is true, this statement executes}

END IF;

(2) Syntax- IF-THEN-ELSE

IF condition

THEN
 {statements to execute when condition is true}
ELSE

 {statements to execute when condition is False}
END IF;

(3) Syntax- If-THEN-ELSIF

IF condition#1
THEN
 {statements to execute when condition#1 is True}

ELSIF condition#2
THEN
 {statements to execute when condition#2 is True}

END IF;

Database Management Systems 3 - 15 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(4) Syntax- If-THEN-ELSIF -ELSE
IF condition#1
THEN
 {statements to execute when condition#1 is True}
ELSIF condition#2
THEN
 {statements to execute when condition#2 is True}
ELSE
 {statements to execute when condition#1 and Condition#1 is False}
END IF;

Programming Example
SET SERVEROUTPUT ON;
DECLARE
 mark NUMBER :=50;
BEGIN
 dbms_output.put_line('Displaying Grades');
 IF(mark >= 70) THEN
 dbms_output.put_line('Grade A');
 ELSIF(mark >= 40 AND mark < 70) THEN
 dbms_output.put_line('Grade B');
 ELSIF(mark >=35 AND mark < 40) THEN
 dbms_output.put_line('Grade C');
 ELSE
 dbms_output.put_line('No Grade');
 END IF;
END;
/

Output(Using SQL PLUS)

Output

Database Management Systems 3 - 16 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Output(Using Oracle SQL Developer)

 3.7.2 General Loop

 A General Loop in PL/SQL is used to execute a set of statements at least once before
the termination of the loop.

 An EXIT condition has to be specified in the loop; otherwise the looping process
will get into a never ending loop, also known as an Infinite Loop

 On encountering with EXIT statement, the loop exits.

 In a PL/SQL Loop, the statements are enclosed between the keywords LOOP and
END LOOP.

 In every Loop, the statements are executed and then control restarts from the top of
the loop until a certain condition is satisfied.

Syntax

LOOP
 Statement1;
 Statement2;

 EXIT;
END LOOP;

Programming Example

SET SERVEROUTPUT ON;
DECLARE
 a integer;

BEGIN
 a:=&a;
 LOOP

 dbms_output.put_line(a);
 a:=a+1;
 EXIT WHEN a>10;

 END LOOP;
END;
/

Database Management Systems 3 - 17 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output (Using ORACLE SQL DEVELOPER)

Output(Using SQL PLUS)

 3.7.3 For Loop

 For loop executes sequence of statements for specific number of times

 There are starting and ending values in between which the statement executes.

 The counter is incremented by one each time.

Syntax

FOR counter IN num1....num2 LOOP
statement1;

statement2;
END LOOP;

Database Management Systems 3 - 18 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Programming Example

DECLARE
 i integer;
BEGIN

 FOR i IN 1..5 LOOP
 DBMS_OUTPUT.PUT_LINE(i);
 END LOOP;

END;
/

Output

 3.7.4 While Loop

 This is a kind of loop that repeats the sequence of statements while given condition
is true.

 Before entering the loop the condition is tested and if it is true then only the control
executes the loop body. It executes until the condition becomes false.

Syntax

WHILE <condition>

 LOOP statement1;
 statement2;
END LOOP;

Database Management Systems 3 - 19 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Programming Example

DECLARE
 i integer;
BEGIN

 i:=1;
 WHILE(i<=5)
 LOOP

 DBMS_OUTPUT.PUT_LINE(i);
 i:=i+1;
 END LOOP;

END;
/

Output

 3.7.5 CASE Statement

 The CASE statement is just similar to switch case statement in C.

 It allows you to execute the sequence of statements based on selector. The selector
can be a variable, or a function or some expression.

 A CASE statement is evaluated from top to bottom. If it get the condition TRUE,
then the corresponding THEN clause is executed and the execution goes to the END
CASE clause.

Database Management Systems 3 - 20 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Syntax

CASE [expression]
WHEN condition1 THEN statement1
 WHEN condition2 THEN statement2

 ...
 WHEN conditionn THEN statementn
 ELSE someStatement

END

Programming Example

SET SERVEROUTPUT ON;

DECLARE
 grade CHAR(1) := 'A';
BEGIN

 CASE grade
 WHEN 'A' THEN
 DBMS_OUTPUT.PUT_LINE('Distinction');

 WHEN 'B' THEN
 DBMS_OUTPUT.PUT_LINE('First Class');
 WHEN 'C' THEN

 DBMS_OUTPUT.PUT_LINE('Higher Second Class');
 WHEN 'D' THEN
 DBMS_OUTPUT.PUT_LINE('Second Class');

 WHEN 'F' THEN
 DBMS_OUTPUT.PUT_LINE('Pass');
 ELSE

 DBMS_OUTPUT.PUT_LINE('Fail');
 END CASE;
END;

/
Output

Distinction

 3.8 Handling Database Tables using PL/SQL

We can create a database table in Oracle database using two ways either using SQL
prompt or using Oracle SQL Developer.

(1) Creating a Database Table Using SQL PLUS

Open SQL PLUS window, type the user-name and password. I am using HR schema
under which the table will be created. The password which I have set during installation
of ORACLE is HR. So by entering correct user name and password the SQL prompt will
appear. Just give the CREATE table query for creating the table.

Database Management Systems 3 - 21 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Following screenshot illustrates creation of table named T with two fields - roll and
name.

Using DESC command the table structure can be displayed.

For inserting the values into the table we use INSERT command as follows –

The table can then be displayed using SELECT command as follows -

Database Management Systems 3 - 22 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(2) Creating a Database Table Using SQL Developer

Open Oracle SQL Developer and follow these steps -
Step 1 : Expand your Database Connection node. Find out the node Table. Just Right click
on it, click on New Table. Here I have already created a connection by name MySys (Refer
section A.3(2) to know how to create a connection), so I am creating a table under this
schema. Here is the screenshot.

Step 1: Give suitable
name to table

Step 2:Add the each
column name and size Step 3: Click OK

button for creating
table

Database Management Systems 3 - 23 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Now you can see your table structure by Selecting Student Table from Table node of
your database Connection List. Just refer following screenshot.

Just click on Data tab for insertion of data into the table -

The data can be inserted into the table by clicking to enter the value to each column -

Then click Save button. The data will be inserted into the table.

Table Structure

Database Management Systems 3 - 24 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.9 Examples on PL/SQL

 Example 3.9.1 Write PL/SQL block of code which accepts the roll.no. from user, the attendance

of roll no entered by user will be checked in stud_att (Roll_no, Att) table. Attendance of

Roll no entered is displayed on screen.

 SPPU : Aug.-17, End Sem, Marks 5

Solution :

Create Table

 CREATE TABLE TESTUDENTS(Roll_no NUMBER(3)PRIMARY KEY, att NUMBER(5));

Insert Data

 INSERT INTO "SYS"."TESTUDENTS" (ROLL_NO, ATT) VALUES ('1', '130')
 INSERT INTO "SYS"."TESTUDENTS" (ROLL_NO, ATT) VALUES ('2', '155')
 INSERT INTO "SYS"."TESTUDENTS" (ROLL_NO, ATT) VALUES ('3', '180')

 INSERT INTO "SYS"."TESTUDENTS" (ROLL_NO, ATT) VALUES ('4', '100')
 INSERT INTO "SYS"."TESTUDENTS" (ROLL_NO, ATT) VALUES ('5', '98')
 INSERT INTO "SYS"."TESTUDENTS" (ROLL_NO, ATT) VALUES ('6', '190')

The table can be viewed as follows –

PL/SQL Program(Without Function)

SET SERVEROUTPUT ON;
DECLARE
 temp_rollno NUMBER(3);

 temp_att NUMBER(5);
 total_days NUMBER(5) := 200;
BEGIN

 temp_rollno := &temp_rollno;
 SELECT att INTO temp_att FROM TESTUDENTS WHERE roll_no = temp_rollno;
 DBMS_OUTPUT.put_line('Roll No = ' || temp_rollno||' Attendance = '|| temp_att);

END;
/

Database Management Systems 3 - 25 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 Example 3.9.2 Write a PL/SQL code block for displaying the area of circle with radius values

from 3 to 8. (Formula to calculate area of circle is Pi*radius*radius)..

 SPPU : Oct.-18, In Sem, Marks 5

Solution :

SET SERVEROUTPUT ON;

DECLARE
 -- The radius is declared in 'radius' variable and result in 'area' variable
 radius NUMBER;

 area NUMBER(10,2);
BEGIN
 DBMS_OUTPUT.put_line('Radius | Area of circle ');

 DBMS_OUTPUT.put_line('--------------------------------- ');
 FOR radius IN 3..8 LOOP
 area:=3.14* radius* radius;

 DBMS_OUTPUT.put_line(' '|| radius || ' | ' || area);
 END LOOP;
 END;

/

Database Management Systems 3 - 26 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 Example 3.9.3 Write the PL/SQL block of code to calculate the factorial value of a number.

 SPPU : May-19, Dec.-19, End Sem, Marks 5
Solution :

SET SERVEROUTPUT ON;
DECLARE

 -- The factorial f is initialized to 1
 f NUMBER :=1;
 --user inputs the number here in variable n

 n NUMBER :=&1;
 num NUMBER := n;
BEGIN

 WHILE n>0 LOOP
 f:=n*f;
 n:=n-1;

 END LOOP;
 DBMS_OUTPUT.put_line('Factorial of '|| num || ' is ' || f);
END;

/
Output

Factorial of 7 is 5040

 Example 3.9.4 Write PI/SQL block of code for following requirement :

Student_fees (PRN, S_name, class, fees_paid).

Accept the PRN of student from user, check the fees paid by student, if fees paid is less

than 30,000 then display the message on screen not paid full fees and display the total fees

due. If fees_paid is greater than or equal to 30,000 then display message no fees due.
 SPPU : Oct.-19, In Sem, Marks 5

Solution : Step 1 : Create Table using following SQL command
 CREATE TABLE STUDENT_FEES

 (PRN NUMBER(5),

Database Management Systems 3 - 27 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 S_NAME VARCHAR2(30),
 CLASS VARCHAR2(20),
 FEES_PAID NUMBER(10)

 };

Insert some data into this table. The sample table can be viewed as

Step 2 : Following is the PL/SQL code that checks whether the fees paid fully or not.

PL/SQL Program

SET SERVEROUTPUT ON;
DECLARE

 temp_PRN NUMBER(5);
 temp_fees NUMBER(10);
BEGIN

 temp_PRN := &temp_PRN;
 SELECT fees_paid INTO temp_fees FROM STUDENT_FEES WHERE PRN = temp_PRN;
 DBMS_OUTPUT.put_line('PRN = ' || temp_prn);

 DBMS_OUTPUT.put_line('Fees(Rs.) = '|| temp_fees);
 IF(temp_fees<30000) THEN
 DBMS_OUTPUT.put_line('The Feees not Paid Fully');

 ELSE
 DBMS_OUTPUT.put_line('No Fees Due');
 END IF;

END;
/

Output(Run1)

PRN = 101
Fees(Rs.) = 30000
No Fees Due

 3.10 Concept of Stored Procedures

 Stored procedure is a type of subprogram in PL/SQL block. It is a group of
statements that can be called by its name.

 This is a subprogram that does not return a value directly.

 A procedure is created with the CREATE OR REPLACE PROCEDURE statement.

Database Management Systems 3 - 28 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Syntax

CREATE or REPLACE Procedure Procedure_Name
[(Parameter_Name [IN | OUT | IN OUT] Type […])]
[IS | AS]

BEGIN
Procedure_Body
END;

 Where

o Procedure_Name is used to specify the name of the procedure.

o CREATE keyword is used to develop a new procedure and [OR REPLACE]
option allows us to modify an existing procedure.

o The optional parameter list contains name and types of parameters.

 There are three ways to pass parameters in procedures -

o IN represents that argument value will be passed from outside the procedure. It
is a read-only parameter. Parameters are passed by reference. Inside the
procedure or a sub-program, an IN Parameter acts as a constant. It cannot be
assigned a value. It is the default mode of parameter passing.

o An OUT parameter returns a value to the calling program. OUT represents that
this parameter will be used to return a value outside of the procedure.

o An IN OUT parameter passes an initial value to the sub-program and returns an
updated value to the caller. We can read and write values using this parameter.

 The executable part is included in the procedure body.

 We can create a procedure without passing the parameters or by passing the
parameters.

 We can execute the procedure using Execute keyword.

 A standalone procedure can be called by using the EXECUTE keyword or by calling
or mentioning the procedure by its name from a PL/SQL block.

Syntax

Execute [Procedure-Name];

 3.10.1 Procedures without Parameter

Let us write a simple procedure for displaying some welcome message.

Step 1 : Create a simple sql file that contains a procedure
SET SERVEROUTPUT ON;
CREATE OR REPLACE PROCEDURE MyMessage Creation of procedure

Database Management Systems 3 - 29 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

IS
BEGIN
 dbms_output.put_line('Welcome friend!!!');

END;
/
EXECUTE MyMessage; This is for executing the procedure

Step 2 : Save and compile the code. The output will be as follows -

Another way of execution of procedure

SET SERVEROUTPUT ON;

CREATE OR REPLACE PROCEDURE MyMessage Creation of procedure
IS
BEGIN

 dbms_output.put_line('Welcome friend!!!');
END;
/

BEGIN This is for calling the procedure
 MyMessage;
END;

/

Save and compile above code to get the output.

 3.10.2 Procedures with Parameters

Following example show the procedure for addition of two numbers. The result is
stored in third variable which is an output variable.

Step 1 : We will create a procedure and store it in an sql file as follows
CREATE OR REPLACE PROCEDURE AddProc(x IN NUMBER, y IN NUMBER, z OUT NUMBER)
IS

BEGIN
 z:=x+y;
END;

/

Save and compile above code.

Two Input and One output
parameter

Database Management Systems 3 - 30 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 2 : The call to the procedure can be made from another file. The code for calling the
procedure for execution is as follows -
SET SERVEROUTPUT ON;
DECLARE

a NUMBER;
b NUMBER;
c NUMBER;

BEGIN
 a := 10;

 b := 20;
 AddProc(a,b,c);
 dbms_output.put_line('Addition of two numbers:'||c);

END;

Save and compile above code

Step 3 : The output will be as follows -

 3.10.3 Stored Procedure for Handling Database Table

Using a stored procedure we can access the database table and can perform insertion,
deletion and updation of data.

Following is a simple example of procedure using which we insert some record in
student table.

Step 1 : Write a procedure as follows
CREATE OR REPLACE PROCEDURE InsertStudent(roll IN NUMBER,
name IN VARCHAR2,
marks IN NUMBER,

branch IN VARCHAR2)
IS
BEGIN

INSERT INTO student VALUES(roll,name,marks,branch);
END;
/

Save and compile the above code.

Database Management Systems 3 - 31 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 2 : Now call the procedure. The code is as follows
SET SERVEROUTPUT ON;
BEGIN
 InsertStudent(7,'Akash',78,'CIVIL');

 DBMS_OUTPUT.PUT_LINE('One row inserted in Student Table!!!');
END;
/

Save and compile the above code.

Step 3 : The output can be as follows

Step 4 : You can cross-verify the above execution by opening the student table. It should
display new row inserted into it.

 3.11 Functions SPPU : Aug.-17, Marks 5

 Stored function is a named block or subprogram in PL/SQL.

 In PL/SQL, a function takes one or more parameter and returns one value.

 The syntax for a function in PL/SQL is as follows :
CREATE [Or REPLACE] Function Function_Name
[(Parameter,..)]

Return Datatype
[IS | AS]
[Declaration Section]

BEGIN

Inserted new row

Database Management Systems 3 - 32 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

[Executable Section]
END Function_Name;

Let us now understand how to write a function in PL/SQL with the help of example

Step 1 : Open New file in Oracle SQL Developer and write following code for creating a
simple function for addition of two numbers.

AdditionFunction.sql

CREATE OR REPLACE FUNCTION Addion_fun(a IN NUMBER, b IN NUMBER)
RETURN NUMBER IS

c NUMBER;
BEGIN
 c := a+b;

 RETURN c;
END;
/

Save this file and compile it.

Step 3 : Create another sql file for calling the above function in an anonymous block.

CallAdditionFun.sql
SET SERVEROUTPUT ON;
BEGIN

 DBMS_OUTPUT.PUT_LINE(addion_Fun(10,20));
END;
/

Save above code and compile it.

Step 4 : On execution of the above code you get the output as

Database Management Systems 3 - 33 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.11.1 PL/SQL Stored Function for Table

We can write PL/SQL stored Function can be used to perform some functionality on
the database tables. Following example shows that we can write a function to find total
number of students from STUDENT table. Here is a stepwise illustration -

Step 1 : Create a student table as follows -

Step 2 : Now create an sql file and create a function in it.
DisplayTotalFun.sql
CREATE OR REPLACE FUNCTION Total_Students

RETURN NUMBER IS
 t NUMBER(2) := 0;
BEGIN

 SELECT COUNT(*) INTO t
 FROM student;
 RETURN t;

END;
/

Save and compile above program

Step 3 : Now we will write sql file for calling the above function.
CallFun.sql
SET SERVEROUTPUT ON;
DECLARE

 t NUMBER(2);
BEGIN
 t := Total_Students();

 DBMS_OUTPUT.PUT_LINE('Total Number of Students in Table Student ' || t);
END;
/

Database Management Systems 3 - 34 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Save above code and compile it.

 Example 3.11.1 Write a PL/SQL function that returns the name of the student whose roll

number is given by user.
Solution :

Step 1 : Create a student table. The sample table is as follows -

Step 2 : Write a function for retrieving the name of the student from the STUDENT table
CREATE OR REPLACE FUNCTION Display(roll NUMBER)
RETURN VARCHAR2 IS

 s_name VARCHAR2(20);
BEGIN
 SELECT name INTO s_name

 FROM student
 WHERE ROLLNO=roll;
 RETURN s_name;

END;
/

Save and compile above code.

Step 3 : Now call the above function
SET SERVEROUTPUT ON;
DECLARE
 s_name VARCHAR2(20);

BEGIN
 s_name := Display(2);
 DBMS_OUTPUT.PUT_LINE('Name Student with Rollno 2 is: ' || s_name);

END;
/

Database Management Systems 3 - 35 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Save and compile above file. You will get following output

 Example 3.11.2 Write PL/SQL block of code which accepts the roll.no. from user, the

attendance of roll no entered by user will be checked in stud_att (Roll_no, Att) table.

Attendance of Roll no entered is displayed on screen.
 SPPU : Aug.-17, End Sem, Marks 5

Solution : PL/SQL Program

Step 1 : Create a function in a sql file as
example.sql
CREATE OR REPLACE FUNCTION Display(roll NUMBER)

 RETURN NUMBER IS
 temp_att NUMBER(5);
BEGIN

 SELECT att INTO temp_att FROM TESTUDENTS WHERE roll_no = roll;
 RETURN temp_att;
END;

/

Step 2 : Following is a driver program that calls above created function
driver.sql
SET SERVEROUTPUT ON;
DECLARE
 temp_rollno NUMBER(3);
 temp_att NUMBER(5);
 total_days NUMBER(5) := 200;
BEGIN
 temp_rollno := &temp_rollno;
 temp_att := Display(temp_rollno);
 DBMS_OUTPUT.put_line('Roll No = ' || temp_rollno||' Attendance = '|| temp_att);
END;
/

Output

Roll No = 4 Attendance = 100

 3.12 Cursors SPPU : Dec.-17, Marks 5

 When an SQL statement is processed, Oracle creates a memory area known as
context area. A cursor is a pointer to this context area.

Database Management Systems 3 - 36 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 It contains all information needed for processing the statement.
 In PL/SQL, the context area is controlled by cursor.
 A cursor contains information on a SELECT statement and the rows of data

accessed by it.
 The cursor is used to fetch and process the rows returned by SQL statement one at

a time.
• There are two types of cursors -

 (1) Implicit cursor (2) Explicit cursor

(1) Implicit cursor

 Whenever Oracle executes an SQL statement such as SELECT INTO, INSERT,
UPDATE and DELETE, it creates an implicit cursor.

 The Implicit Cursor is the Default Cursor in PL/SQL block.
 Orcale provides some attributes known as Implicit cursor's attributes to check the

status of DML operations. Some of them are as follows -
o %ROWCOUNT : It returns the number of rows influenced by an UPDATE,

DELETE or an INSERT statement.
o %NOTFOUND : It returns TRUE if an UPDATE, DELETE or an INSERT

statement influenced zero rows or a SELECT INTO statement returned no rows.
Else, it returns a FALSE.

o %FOUND : It returns TRUE if an UPDATE, DELETE or an INSERT statement
influenced one or more rows or a SELECT INTO statement returned one or more
rows. Else, it returns FALSE.

o %ISOPEN : It returns FALSE for Implicit cursors as Oracle closes the PL/SQL
cursor by default after processing its associated PL/SQL statement.

Programming Example : Following is an example program that uses attributes of implicit
cursor to demonstrate number of rows affected when SELECT query is executed for
Student table
SET SERVEROUTPUT ON;
DECLARE
 s_name student.name%type;
BEGIN
 SELECT name INTO s_name
 FROM student
 WHERE marks>=70;
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: '||sql%rowcount);
END;
/

Output

Number of rows processed:5

Database Management Systems 3 - 37 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(2) Explicit cursor

 Explicit cursors are used when you are executing a SELECT statement query that
will return more than one row.

 Cursors can process one record at a given point of time even though it stores more
than one record.

 An explicit cursor is defined in the declaration section of the PL/SQL Block.
 Explicit cursors are used if you need to have better control over the Context Area

via Cursor.
Syntax for Declaration of Explicit Cursor
CURSOR cusrsor_name
IS

SELECT statement

For example

CURSOR MyCursor

IS
SELECT * FROM Student;

The explicit cursor works in four stages -

1) Declaration of cursor : The declaration of cursor is in declaration section of PL/SQL
block. The name of the cursor requires to be defined along with the SELECT
Statement.

Syntax

CURSOR cursor-name IS

SELECT statement;

2) Open the cursor : Opening the cursor also means allocating the memory for the
cursor in the context area which thereby makes it sufficient to fetch and store
records in it.

Syntax
OPEN cursor-name;

3) Fetch the cursor : Fetching the cursor involves retrieval of data using the fetch
statement. It is used to help the cursor process and access records or rows at a time.

Syntax
FETCH cursor_name INTO variable_list;

4) Close the cursor : Once the work associated for a cursor to be completed is
accomplished, it is necessary to release the allocated memory of the cursor to let
other tasks occupy memory.

Syntax
Close cursor_name;

Now let us understand how to write a simple explicit cursor and execute it.

Database Management Systems 3 - 38 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 1 : Create a database table for using cursor. I have already created a student table in
section 3.8 (2). It is as follows :

Step 2 : Under your current connection type(In my case it is MySys), Open File->New
File. Give suitable name to your file which stores the cursor program. I have given the
name as CursorDemo.sql

Step 3 : Write the program as follows
SET SERVEROUTPUT ON;
DECLARE

 s_name VARCHAR2(30);
 --Declare Cursor
 CURSOR My_Cursor IS

 SELECT name FROM Student
 WHERE Marks>70;
BEGIN

 OPEN My_Cursor;
 Loop
 FETCH My_Cursor INTO s_name;

 DBMS_OUTPUT.PUT_LINE(s_name);
 EXIT WHEN My_Cursor %NOTFOUND;
 END Loop;

 CLOSE My_Cursor;
END;

Step 4 : Save your file and execute script by either hitting F5 or by Run Script

Database Management Systems 3 - 39 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The output will be obtained as a list of names of those students who have marks > 70.
Here is the output

Program Explanation : In above code,

 The cursor is created to display the names of students who have scored more than
70 marks.

 The name of the cursor is My_Cursor. The SELECT query associated with it is
SELECT name FROM STUDENT WHERE Marks >70;

 Then we open the My_Cursor.

 Inside the LOOP, we fetch students’ name from student table into variable s_name
and each time the s_name is displayed. This loop is exited when no record is found.
For that purpose the attribute %NOTFOUND is used.

 Finally the cursor is closed.

Database Management Systems 3 - 40 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 3.12.1 The organization has decided to increase the salary of employees by 10 % of

existing salary, whose existing salary is less than ` 10000/-. Write a PL/SQ block to

update the salary as per above requirement, display an appropriate message based on the

number of rows affected by this update (using implicit cursor status variables).
 SPPU : Dec.-17, End Sem, Marks 5

Solution :

Step 1 : Create an employee table as follows -

PL/SQL Program

SET SERVEROUTPUT ON;
BEGIN
 UPDATE emp_table

 SET salary = salary+(salary*0.1)
 WHERE salary<10000;

DBMS_OUTPUT.put_line('Number of records updated= ' ||sql%rowcount);
END;
/

Output

SQL query to increase the
salary(which is less than
10000) by 10%.

Use of implicit cursor
variable

Database Management Systems 3 - 41 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Now If we open the database table we get the updated values of the salary as

 3.13 Triggers SPPU : Dec.-17, 18, 19, Marks 5

 Trigger is something that is invoked automatically when some event occurs.

 PL/SQL triggers are block structures or pre-defined programs, which may be in-
built or even explicitly developed by the programmers for a particular task.

 Trigger is stored into database and invoked repeatedly, when specific condition
match.

 Triggers are stored programs, which are automatically executed or fired when some
event occurs.

 Triggers are associated with response-based events such as a,

o Database Definition Language (DDL) statement such as CREATE, DROP or
ALTER .

o Database Manipulation Language (DML) statement such as UPDATE, INSERT or
DELETE.

o Any other database operation such as a Startup, Shutdown, Logging in and
Logging Out.

Syntax

CREATE OR REPLACE TRIGGER Trigger_Name
BEFORE or AFTER or INSTEAD OF

INSERT or UPDATE or DELETE
of Column_Name
ON Table_Name

[REFERENCING OLD AS O New AS N]
FOR EACH ROW
WHEN (Condition)

DECLARE

Database Management Systems 3 - 42 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Declaration Section
BEGIN
Execution Section

END;

Where

 CREATE [OR REPLACE] TRIGGER trigger_name: It creates or replaces an existing
trigger with some trigger_name.

 {BEFORE | AFTER | INSTEAD OF} : This specifies when the trigger would be
executed. The INSTEAD OF clause is used for creating trigger on a view.

 {INSERT [OR] | UPDATE [OR] | DELETE} : This specifies the DML operation.

 [OF col_name] : This specifies the column name that would be updated.

 [ON table_name] : This specifies the name of the table associated with the trigger.

 [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old
values for various DML statements, like INSERT, UPDATE, and DELETE.

 [FOR EACH ROW] : This specifies a row level trigger, i.e., the trigger would be
executed for each row being affected. Otherwise the trigger will execute just once
when the SQL statement is executed, which is called a table level trigger.

 WHEN (condition) : This provides a condition for rows for which the trigger would
fire. This clause is valid only for row level triggers.

Programming Example

Let us now see how to use trigger with the help of some example -

 Example 3.13.1 Write a trigger for insertion of a row into a person table. On firing the trigger

name of the user who performed insertion operation should be displayed.
Solution :

CREATE TABLE PersonTab (

 pname VARCHAR2(20)
);

SET SERVEROUTPUT ON;
CREATE OR REPLACE TRIGGER MyTrigger
BEFORE INSERT ON PersonTab

FOR EACH ROW
ENABLE
DECLARE

 usr_name VARCHAR2(20);
BEGIN
 SELECT user INTO usr_name FROM dual;

Here table named PersonTab is created

Code for actual trigger

Database Management Systems 3 - 43 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 DBMS_OUTPUT.PUT_LINE('Inserted a new row by user: '||usr_name);
END;
/

INSERT INTO PersonTab VALUES('Sharda');

Output

You can cross-verify the insertion of data into the table by opening the corresponding

table.
For instance -

 Example 3.13.2 Write PL/SQL trigger for following requirement :

Event : Deletion of row from stud (roll_no, name, class) table.

Action : After deletion of values from stud table, values should be inserted into

cancel_admission (roll_no, name) table

Note : For every row to be deleted, action should be performed.
 SPPU : Dec.-17, End Sem, Marks 5

Solution :
Step 1 : Create table stud_table using following SQL statement
CREATE TABLE stud_table(
 roll_no NUMBER(5),

 sname VARCHAR2(30),
 sclass VARCHAR2(20)
);

Step 2 : Insert data into table using following commands
INSERT INTO stud_table VALUES(111,'AAA','TECOMP');
INSERT INTO stud_table VALUES(222,'BBB','SEMECH');
INSERT INTO stud_table VALUES(333,'CCC','BECIVIL');

INSERT INTO stud_table VALUES(444,'DDD','TEETC');

Step 3 : Create table cancel_admission using following SQL statement
CREATE TABLE cancel_admission(
 roll_no NUMBER(5),

 sname VARCHAR2(30)
);

SQL query on execution of
which the trigger gets fired.

Database Management Systems 3 - 44 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 4 : Following is a PL/SQL program that deletes data from stud_table and insert the
deleted data into cancel_admission table

TriggerDemo1.sql

SET SERVEROUTPUT ON;
CREATE OR REPLACE TRIGGER Stud_AD

AFTER DELETE ON stud_table
FOR EACH ROW
ENABLE

BEGIN
 INSERT INTO cancel_admission

 (roll_no,
 sname)
 VALUES

 (:old.roll_no,
 :old.sname);
END;

/
DELETE FROM stud_table WHERE roll_no=222

Output

On compiling above trigger we get the output as follows -

The execution of this trigger can be verified by observing the data from student_table
and cancel_admission table.

Stud_table Table

Database Management Systems 3 - 45 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Cancel_admission Table

 Example 3.13.3 Consider the schema : student_fees_detail (name, total_fees_deposited,

till_date)
Answer the following :
i) Write a SQL query to display the total fees deposited by students whose minimum 3

character name starts with aj.
ii) Write database trigger to preserve the old values of student fees details before updating

in table.
 SPPU : Dec.-18,19, End Sem, Marks 5

Solution :

i) SQL Query is as follows -

SELECT name,total_fees_deposited

FROM student_fees_detail
WHERE LEN(name)>2 AND name LIKE ’aj%’

ii) Step 1 : First of all we will create the table stud_fees_detail using following SQL
statement.
CREATE TABLE stud_fees_detail
 (

 name VARCHAR2(30),
 fees_deposited NUMBER(5),
 till_date DATE

);

Step 2 : Insert values the values into this table using following SQL statement -
INSERT INTO stud_fees_detail VALUES('AAA',2000,'27-JUNE-19');
INSERT INTO stud_fees_detail VALUES('BBB',5000,'16-May-20');

INSERT INTO stud_fees_detail VALUES('CCC',1000,'01-August-19');
INSERT INTO stud_fees_detail VALUES('DDD',3000,'28-March-20');
INSERT INTO stud_fees_detail VALUES('EEE',2500,'12-November-20');

Step 3 : Simply create a table backup_fees using following SQL statement -
CREATE TABLE backup_fees
 (
 name VARCHAR2(30),

 fees_deposited NUMBER(5),
 till_date DATE
);

Database Management Systems 3 - 46 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 4 : The PL/SQL script for the updating values is as shown below

SET SERVEROUTPUT ON;
CREATE OR REPLACE TRIGGER Stud_fees_AU
AFTER UPDATE ON stud_fees_detail
FOR EACH ROW
ENABLE

BEGIN
 INSERT INTO backup_fees
 (name,
 fees_deposited,
 till_date
)
 VALUES
 (:old.name,
 :old.fees_deposited,
 :old.till_date
);
END;
/
UPDATE stud_fees_detail
SET fees_deposited=7000
WHERE name='CCC'

UPDATE stud_fees_detail
SET fees_deposited=5555
WHERE name='DDD'

Output

Stud_fees_detail Table(This table is updated as trigger executes)

Database Management Systems 3 - 47 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Back_fees Table

 3.14 Assertions

 An assertion is a predicate expressing a condition we wish the database to always
satisfy.

 When created, the expression must be true.

 DBMS checks the assertion after any change that may violate the expression.

 Syntax for creating an assertion
CREATE ASSERTION <assertion-name>CHECK <predicate>

 Example

Consider following relation of customer
customer(customer_name, customer_street, customer_city)

If we want that the customer city should not be NULL then the Assertion can be
written as follows
CREATE ASSERTION city_not_null Check
(NOT EXISTS

(Select *
 From customer
 Where customer_city is null));

Difference between Assertion and Trigger

Sr. No. Assertion Trigger

1. Assertions do not modify the data. They
only check certain condition.

Triggers are powerful than assertions
because they can check the condition as
well as they can modify the data.

2. Assertions are not linked to specific tables
in the database and not linked to specific
events.

Triggers are linked to specific tables and
specific events.

It must return true

Database Management Systems 3 - 48 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

3. All assertions can be implemented as
triggers.

All triggers cannot be implemented as
assertions.

4. Oracle does not support assertion. Oracle support Triggers.

 3.15 Roles and Privileges

 Roles

 Role is a set of privileges that can be granted to users. The roles are used for
administrating the database. The privileges can be added to the role and the role
can be granted to the user.

 The role can be created in Oracle using CREATE ROLE command. For example -
 CREATE ROLE data_manager;

 The IDENTIFIED BY clause is used for authentication of the user. It adds the
security layer to the role. For instance - In following example, the role
data_manager is created and it is identified using the password ‘password 1234’.

 CREATE ROLE data_manager.

 IDENTIFIED BY password1234

 The privileges or permissions to particular roles can be given with the command
GRANT. For example -

 GRANT create table,create view

 TO data_manager;

Advantages of role management

 It is possible to assign multiple roles to the user.

 One can assign password to particular role for security purpose.

 Rather than assigning privileges at one time to some user, we can create the role
and assign privileges to the role and then grant that role to multiple users.

 We can add or delete some privileges to the role and all the users are assigned with
that role get those privileges or loss that privileges automatically.

 Privileges

 Privileges are the access rights provided to the user on database object.

 Some of the examples of privileges are -

o Connect to database

o Create a table

o Select a row from another user’s table.

Database Management Systems 3 - 49 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 There are two types of privileges -

1. System privilege : This allows user to CREATE, ALTER or DROP the database
objects such as table, views and so on.

2. Object privilege : This allows user to SELECT, INSERT, UPDATE, or DELETE
data from database objects.

 3.16 Exceptions SPPU : Dec.-18, May-19, Marks 5

Exception is an unusual situation that when occurs interrupts the normal flow of
execution. The exception handling mechanism allows to handle this runtime error
situation in such a way that the normal flow of execution may not get interrupted.

There are two types of exceptions in PL/SQL
1) System Defined Exceptions : These exceptions are predefined in PL/SQL which get

raised WHEN certain database rule is violated. For example - Consider following
Student table

RollNo Name Marks

101 Shilpa 55

102 Trupti 66

103 Pradnya 43

104 Sharda 42

105 Vijaya 45

We can write the exception as follows -
DECLARE

 s_roll customers.RollNo%type := 100;
 s_name customers.Name%type;
 s_marks customers.Marks%type;

BEGIN
 SELECT Name INTO s_name
 FROM student

 WHERE RollNo = s_RollNo;
 DBMS_OUTPUT.PUT_LINE ('Name: '|| s_name);
EXCEPTION

 WHEN no_data_found THEN
 dbms_output.put_line('Student is not present!');
 WHEN others THEN

 dbms_output.put_line('Error!!!');
END;
/

Database Management Systems 3 - 50 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

After execution of above PL/SQL program we get following output

Student is not present!

Explanation : The student with roll number 100 is not present in the Student table, hence is
the output.

Here NO_DATA_FOUND is a pre-defined exception which is raised when a SELECT
INTO statement returns no rows.

2) User defined Exception : PL/SQL facilitates their users to define their own
exceptions according to the need of the program. A user-defined exception can be
raised explicitly, using either a RAISE statement or the procedure
DBMS_STANDARD.RAISE_APPLICATION_ERROR.

Syntax

DECLARE

my-exception EXCEPTION;

Example

DECLARE
 s_roll customers.RollNo%type := 100;

 s_name customers.Name%type;
 s_marks customers.Marks%type;
 my_exception Exception;

BEGIN
 IF s_roll<=0 THEN
 RAISE my_exception;

 ELSE
 SELECT Name INTO s_name
FROM student

 WHERE RollNo = s_RollNo;
 DBMS_OUTPUT.PUT_LINE ('Name: '|| s_name);
 END IF;

EXCEPTION
 WHEN my_exception THEN
 dbms_output.put_line('Roll number must be greater than zero');

 WHEN no_data_found THEN
 dbms_output.put_line('Student is not present!');
 WHEN others THEN

 dbms_output.put_line('Error!!!');
END;
/

Database Management Systems 3 - 51 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 3.16.1 Write a PL/SQL block using user defined exception for following

requirements :
The Bank_Account table records the current balance for an account, which is updated
whenever, any deposits or withdrawals takes place. If the withdrawal attempted is more
than the current balance held in the account. The user defined exception is raised,
displaying an appropriate message.
Note : Assume table :- Bank_Account (Account_No, Balance)

 SPPU : Dec.-18, End Sem, Marks 5
Solution :
Step 1 : Table named Bank_Account is created as follows -

Step 2 : Now create PL/SQL Program as follows
SET SERVEROUTPUT ON;
DECLARE
 temp_account_no NUMBER(5);
 temp_balance NUMBER(10);
 withdraw_amount NUMBER(10) := 0;
 Insufficient_balance EXCEPTION;
BEGIN

 temp_account_no :=&temp_account_no;
 withdraw_amount := &withdraw_amount;
 SELECT balance INTO temp_balance FROM bank_account WHERE account_no =
temp_account_no;
 DBMS_OUTPUT.put_line('Account No = ' || temp_account_no||' Balanace = '|| temp_balance);
 IF(temp_balance< withdraw_amount) THEN
 RAISE Insufficient_balance;
 END IF;
 temp_balance := temp_balance - withdraw_amount;
 DBMS_OUTPUT.put_line('Current Balance is: '|| temp_balance);

 EXCEPTION WHEN Insufficient_balance THEN
 DBMS_OUTPUT.put_line('Insufficient Balance!!!');
END;
/

Database Management Systems 3 - 52 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output(Run 1)

Output(Run 2)

 Example 3.16.2 Write a PL/SQL block for following requirement and handle the exceptions.
Roll no. of student will be entered by user. Attendance of roll no. entered by user will be
checked in student table. If attendance is less than 75 % then display the message "Term
not granted" and set the status in student table as "D". Otherwise display message
"Term granted" and set the status in student table as "ND".

 SPPU : May-19, End Sem, Marks 5

Solution :

SET SERVEROUTPUT ON;
DECLARE
 temp_rollno NUMBER(3);
 temp_att NUMBER(5);
 total_days NUMBER(5) := 200;
 attend_ex EXCEPTION;
BEGIN
 temp_rollno := &temp_rollno;
 SELECT att INTO temp_att FROM stud_att WHERE roll_no = temp_rollno;
 DBMS_OUTPUT.put_line('Roll No = ' || temp_rollno||' Attendance = '|| temp_att ||'days outof
200');
 IF(temp_att<(total_days*0.75)) THEN
 RAISE attend_ex;
 ELSE
 DBMS_OUTPUT.put_line('Term Granted!!!');
 UPDATE stud_att
 SET status ='ND'
 WHERE roll_no = temp_rollno;

 END IF;

 EXCEPTION WHEN attend_ex THEN
 DBMS_OUTPUT.put_line('Term not Granted!!!');
 UPDATE stud_att
 SET status ='D'
 WHERE roll_no = temp_rollno;
END;
/

Output

On subsequent execution of the above PL/SQL code following output can be obtained.

Database Management Systems 3 - 53 PL / SQL

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

We can verify the above execution by opening the stud_att table. Note that the status
is updated as per the required condition.

 Example 3.16.3 Write PL/SQL code block that raise a user defined exception when business

rule is violated. Business rule for client - master table specifies when the value of bal-due

field is less than 0 handle the exception.
 SPPU : May-19, End Sem, Marks 5

Solution :

SET SERVEROUTPUT ON;
DECLARE
 temp_client_id NUMBER(5);
 temp_balance NUMBER(10);
 Insufficient_balance EXCEPTION;
BEGIN
 SELECT bal_due INTO temp_balance FROM client_master WHERE bal_due < 0;
 IF(temp_balance<0) THEN
 RAISE Insufficient_balance;
 END IF;
 DBMS_OUTPUT.put_line('Success');

 EXCEPTION WHEN Insufficient_balance THEN
 DBMS_OUTPUT.put_line('Business Rule Violated!!!');
END;
/

Unit - II
Multiple Choice Questions

Q.1 What is the full form of SQL ?

 a Standard Query Language b Structured Query Language

 c Simple Query Language d Specification Query Language

Q.2 The SELECT query belongs to following category of SQL Command :

 a DDL b DML

 c DCL d None of these

Q.3 The database language used for defining the schema of the database is called _____.

 a DDL b DML

 c DCL d None of these

Q.4 DDL stands for _____.

 a Data Decoration Language b Data Definition Language

 c Dual Data Language d None of these

Q.5 Which of the following is not a valid SQL type ?

 a Decimal b Float

 c Numeric d Character

Q.6 Which operator tests column for the absence of data ?

 a EXIST operator b IS NULL operator

 c NOT operator d None of these

Q.7 In SQL following command is used to change table’s storage characteristics ?

 a MODIFY b CHANGE

 c ALTER d All of these

Q.8 Which operator is used to compare a value to specified list of values ?

 a ANY b BETWEEN

 c ALL d IN

Q.9 Which SQL keyword is used to retrieve maximum value ?

 a MOST b MAX

 c TOP d UPPER

(3 - 54)

Database Management Systems 3 - 55 Unit - II

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.10 In SQL which command is used to SELECT only one copy of each set of duplicable rows

_____.

 a SELECT DISTINCT b SELECT UNIQUE

 c SELECT DEFINITE d None of these

Q.11 The FROM clause is used to specify _____.

 a range for search condition b actual search condition

 c table from which data is searched. d all of the above

Q.12 Which of the following SQL command is used to retrieve data ?

 a DELETE b INSERT

 c RETRIVE d SELECT

Q.13 Which of the following command is used to add data to database table ?

 a Add b Insert

 c Append d All of the above

Q.14 Which of the following is an aggregate function ?

 a LEFT b RIGHT

 c MAX d JOIN

Q.15 In SQL, which command is used to issue multiple CREATE TABLE, CREATE VIEW and

GRANT statements in a single transaction ?

 a CREATE PACKAGE b CREATE SCHEMA

 c CREATE CLUSTER d All of the above

Q.16 The intersect operation _____.

 a automatically eliminates duplicates

 b automatically eliminates duplicates, if we provide all clause with intersect

 c never eliminates duplicates

 d none of these

Q.17 Which of the following join is also called as an inner join ?

 a Self-join b Non Equi-join

 c Equi-join d None of these

Q.18 The virtual table created as a result of SELECT statement is called _____.

 a view b synonym

 c sequence d transaction

Database Management Systems 3 - 56 Unit - II

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.19 Which of the following aggregate functions ignore NULL values ?

 a MAX b COUNT

 c SUM d All of the above

Q.20 Following keyword is used with wildcards _____.

 a IN b BETWEEN

 c LIKE d UNIQUE

Q.21 What is the meaning of LIKE ‘%0%0% ?

 a begins with two 0’s b ends with two 0’s

 c two 0’s at any position d none of these

Answers Keys for Multiple Choice Questions :

Q.1 b Q.2 b Q.3 a Q.4 b

Q.5 a Q.6 b Q.7 c Q.8 d

Q.9 b Q.10 a Q.11 c Q.12 d

Q.13 b Q.14 c Q.15 b Q.16 a

Q.17 c Q.18 a Q.19 d Q.20 c

Q.21 c

(4 - 1)

UNIT - III

4 Relational Database Design

Syllabus
Relational Model : Basic concepts, Attributes and Domains, CODD's Rules. Relational
Integrity : Domain, Referential Integrities, Enterprise Constraints. Database Design : Features of
Good Relational Designs, Normalization, Atomic Domains and First Normal Form, Decomposition
using Functional Dependencies, Algorithms for Decomposition, 2NF, 3NF, BCNF.

Contents

Part I : Relational Model

4.1 Basic Concepts

4.2 Attributes and Domains

4.3 CODD's Rules ... Aug.-17

 ... Oct.-19 Marks 5

Part II : Relational Integrity

4.4 Keys

4.5 Constraints ... May-18, Dec.-19 Marks 5

4.6 Enterprise Constraints

Part III : Database Design

4.7 Features of Good Relational Designs Dec.-18,

 ... Aug.-17 Marks 5

4.8 Data Redundancy and Update Anomalies

4.9 Normalization ... Dec.-1.................................... Marks 5

4.10 Atomic Domains and First Normal Form

4.11 Decomposition using Functional Dependencies Oct.-19
 ... May-18 Marks 5

4.12 Equivalence and Minimal Cover

4.13 Algorithms for Decomposition

4.14 Lossless Join ... May-18 Marks 6

Database Management Systems 4 - 2 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

4.15 Dependency Preservation

4.16 Second Normal Form (2NF) Oct.-19, Marks 7

4.17 Third Normal Form (3NF) ... Oct.-18, 19,

 ... Aug.-17,

 ... Dec.-18, Marks 7

4.18 BCNF ... May-18,

 ... Dec.-18,19,............................ Marks 5

Multiple Choice Questions

Database Management Systems 4 - 3 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Part I : Relational Model

 4.1 Basic Concepts

 Relation database is a collection of tables having unique names.
 For example - Consider the example of Student table in which the information

about the student is stored.

RollNo Name Phone

001 AAA 1111111111

002 BBB 2222222222

003 CCC 3333333333

Fig. 4.1.1 Student table

The above table consists of three column headers RollNo, Name and Phone. Each row
of the table indicates the information of each student by means of his Roll Number, Name
and Phone number.

Similarly consider another table named Course as follows –

CourseID CourseName Credits

101 Mechanical 4

102 Computer Science 6

103 Electrical 5

104 Civil 3

Fig. 4.1.2 Course table

Clearly, in above table the columns are CourseID, CourseName and Credits. The
CourseID 101 is associated with the course named Mechanical and associated with the
course of mechanical there are 4 credit points. Thus the relation is represented by the
table in the relation model. Similarly we can establish the relationship among the two
tables by defining the third table. For example – Consider the table Admission as

RollNo CourseID

001 102

002 104

003 101

Fig. 4.1.3 Admission table

Database Management Systems 4 - 4 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

From this third table we can easily find out that the course to which the RollNo 001 is
admitted is computer Science.

 4.2 Attributes and Domains

There are some commonly used terms in Relational Model and those are -

Table or relation : In relational model, table is a collection of data items arranged in
rows and columns. The table cannot have duplicate data or rows. Below is an example of
student table

Roll No Name Marks Phone

001 AAA 88 1111111111

002 BBB 83 2222222222

003 CCC 98 3333333333

004 DDD 67 4444444444

Tuple or record or row : The single entry in the table is called tuple. The tuple
represents a set of related data. In above Student table there are four tuples. One of the
tuple can be represented as

001 AAA 88 1111111111

Attribute or columns : It is a part of table that contains several records. Each record
can be broken down into several small parts of data known as attributes. For example the
above table consists of four attributes such as RollNo,Name,Marks and Phone.

Relation schema : A relation schema describes the structure of the relation, with the
name of the relation (i.e. name of table), its attributes and their names and type.

Relation Instance : It refers to specific instance of relation i.e. containing a specific set
of rows. For example – the following is a relation instance – which contains the records
with marks above 80.

RollNo Name Marks Phone

001 AAA 88 1111111111

002 BBB 83 2222222222

003 CCC 98 3333333333

Domain : For each attribute of relation, there is a set of permitted values called
domain. For example – in above table, the domain of attribute Marks is set of all possible
permitted marks of the students. Similarly the domain of Name attribute is all possible
names of students.

That means Domain of Marks attribute is (88,83,98)

Database Management Systems 4 - 5 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Atomic : The domain is atomic if elements of the domain are considered to be
indivisible units. For example in above Student table, the attribute Phone is non-atomic.

NULL attribute : A null is a special symbol, independent of data type, which means
either unknown or inapplicable. It does not mean zero or blank. For example - Consider a
salary table that contains NULL

Emp# Job Name Salary Commission

E10 Sales 12500 32090

E11 Null 25000 8000

E12 Sales 44000 0

E13 Sales 44000 Null

Degree : It is nothing but total number of columns present in the relational database.
In given Student table –

Roll No Name Marks Phone

001 AAA 88 1111111111

002 BBB 83 2222222222

003 CCC 98 3333333333

The degree is 4.
Cardinality : It is total number of tuples present in the relational database. In above

given table the cardinality is 3

 Example 4.2.1 Find out following for given Staff table

i) No of Columns ii) No of tuples

iii) Different attributes iv) Degree v) Cardinality

StaffID Name Sex Designation Salary DOJ

S001 John M Manager 50000 1 Oct. 2012

S002 Ram M Executive 20000 20 Jan. 2015

S003 Meena F Supervisor 40000 12 Aug. 2011

Solution :

i) No of Columns = 6

ii) No of Tuples = 3

iii) Different attributes are StaffID, Name,Sex, Designation, Salary, DOJ

iv) Degree = Total number of columns = 6

v) Cardinality =Total number of rows = 3

Database Management Systems 4 - 6 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 4.3 CODD's Rules SPPU : Aug.-17, Oct.-19, Marks 5

Codd proposed 13 rules for relational database management system, which are
popularly known as Codd’s 12 rule : These rules are as follows –

Rule 0 : This rule states for a database to be relational, it must use its relational capabilities
to manage the database.

Rule 1 : The Information rule - All information in an RDBMS is represented logically only
by storing the values in tables.

Rule 2 : The Guaranteed Access rule - Each item of data in an RDBMS is guaranteed to be
logically accessible by specifying the table name, primary key value, and column name.

Rule 3 : The Systematic Treatment of Null Values rule - Null values are supported in a
fully relational DBMS for representing missing information or inapplicable information in
a systematic way which is independent of the data type.

Rule 4 : The Dynamic Online Catalog Based on the Relational Model rule - Database
dictionary which is called as catalog-is the structure description of the complete Database
and it must be stored online. This Catalog must be governed by same rules as rest of the
database. The same query language should be used on catalog as used to query database.

Rule 5 : The Comprehensive Data Sublanguage rule - At least one well structured, well-
defined language must be there which can access all the data present in the database.

Rule 6 : The View Updating rule - All views of the data which are theoretically updatable
must be updatable in practice by the DBMS.

Rule 7 : Relational level operation - The High-level Insert, Update, and Delete rule: There
must be insert, delete and update operations at each level of relations.

Rule 8 : The Physical Data Independence rule - Physical storage should not matter the
system. Whenever any changes are made in either storage representations or access
methods then it should not affect the application.

Rule 9 : The Logical Data Independence rule - If any changes are made in table structure
then the logical view of the user should not get affected. Fpr Rule example - if a table is
split into two tables internally, the view of the table to the user should be an entire table
and not the split tables.

Rule 10 : The Integrity Independence rule - The Integrity constraints must be defined by
the RDBMS stored in the system and it should not be enforced by the external application
programs.

Database Management Systems 4 - 7 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Rule 11 : The Distribution Independence rule - An RDBMS must have distribution
independence. That means, even if database is scattered geographically, user should get a
feel as if it is stored in one piece at one location.

Rule 12 : The Non-sub-version rule - If low-level language is allowed to access the
system, then that low-level language must not be able to subvert or bypass the integrity
rules which are expressed in a higher-level language.

 Review Questions

1. One of the rule designed by Codd's for good relational database management system is
integrity independence, which states that all integrity constraints can be independently
modified without the need of any change in the application. Justify the significance of rule in
relational database management system. SPPU : Aug.-17, In Sem, Marks 5

2. Twelve rules are proposed by codd, which according to him, a database must obey in order to be
regarded as a true relational database. One of the rule is comprehensive data sub language rule.
A database can only be accessed using a language having linear syntax that supports data
definition, data manipulation and transaction management operations. Explain in brief above
rule. Also state its significance. SPPU : Oct.-19, In Sem, Marks 5

Part II : Relational Integrity

 4.4 Keys

Keys are used to specify the tuples distinctly in the given relation.

Various types of keys used in relational model are – Superkey, Candidate Keys,
primary keys, foreign keys. Let us discuss them with suitable example

1) Super Key(SK) :

It is a set of one or more attributes within a table that can uniquely identify each record
within a table. For example – Consider the Student table as follows –

Reg No. Roll No Phone Name Marks

R101 001 1111111111 AAA 88

R102 002 2222222222 BBB 83

R103 003 3333333333 CCC 98

R104 004 4444444444 DDD 67

Fig. 4.4.1 Student

Database Management Systems 4 - 8 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The superkey can be represented as follows

Clearly using the (RegNo) and (RollNo,Phone,Name) we can identify the records
uniquely but (Name, Marks) of two students can be same, hence this combination not
necessarily help in identifying the record uniquely.

2) Candidate Key(CK) :

The candidate key is a subset of superset. In other words candidate key is a single
attribute or least or minimal combination of attributes that uniquely identify each record
in the table. For example - in above given Student table, the candidate key is RegNo,
(RollNo,Phone). The candidate key can be

Thus every candidate key is a superkey but every superkey is not a candidate key.

3) Primary Key(PK) :

The primary key is a candidate key chosen by the database designer to identify the
tuple in the relation uniquely. For example – Consider the following representation of
primary key in the student table

Database Management Systems 4 - 9 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Other than the above mentioned primary key, various possible primary keys can be
(RollNo), (RollNo,Name), (RollNo, Phone)

The relation among super key, candidate key and primary can be denoted by
 Candidate Key = Super Key – Primary Key

Rules for Primary Key
i) The primary key may have one or more attributes.
ii) There is only one primary key in the relation.
iii) The value of primary key attribute can not be NULL.
iv) The value of primary key attribute does not get changed.

4) Alternate key :

The alternate key is a candidate key which is not chosen by the database designer to
uniquely identify the tuples. For example –

5) Foreign key :

Foreign key is a single attribute or collection of attributes in one table that refers to the
primary key of other table.

 Thus foreign keys refer to primary key.
 The table containing the primary key is called parent table and the table containing

foreign key is called child table.

Database Management Systems 4 - 10 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example -

Database Management Systems 4 - 11 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

From above example, we can see that two tables are linked. For instance we could
easily find out that the ‘Student CCC has opted for ComputerSci course’

 4.5 Constraints SPPU : May-18, Dec.-19, Marks 5

Constraints mean some rules or restrictions that are set on the database.

There are three main types of constraints.

1. Domain Constraint

2. Key Constraint or NULL Constraint

3. Integrity Constraint

i) Entity Integrity Constraint

ii) Referential Integrity Constraint

1. Domain Constraint

 Domain constraint defines the domain or set of values for an attribute.

 The data type of domain includes string, character, integer, time, date, currency, etc.
The value of the attribute must be available in the corresponding domain.

 For example - Consider the Student table as follows.

The above relation does not satisfy the domain constraint.

2. Key Constraint or Null Constraint

 Keys are used to identify particular record from the table. Primary key is normally
used to identify the record uniquely.

Database Management Systems 4 - 12 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Hence the key constraint can be stated as -

o All values of primary key must be unique.

o The value of primary key must not be NULL.

 For example - Consider the Student table as follows. For this relation, the Roll No is
a primary key. It is expected to find the desired record using this primary key.

The above relation does not satisfy key constraint as the primary key is not having
unique value.

3. Integrity Constraint

 Integrity constraints are rules that are to be applied on database columns to ensure
the validity of data.

 For example -

i) The Employee ID and Department ID must consist of two digits.

ii) Every Employee ID must start with letter.

i) Entity Integrity Constraint

 This rule states that “In the relations, the value of attribute of primary key can not
be null”.

 The NULL represents a value for an attribute that is currently unknown or is not
applicable for this tuple. The Nulls are always to deal with incomplete or
exceptional data.

 The primary key value helps in uniquely identifying every row in the table. Thus if
the users of the database want to retrieve any row from the table or perform any
action on that table, they must know the value of the key for that row. Hence it is
necessary that the primary key should not have the NULL value.

Database Management Systems 4 - 13 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 For example -

ii) Referential Integrity Constraint

 In relationships, data is linked between two or more tables.
 This is achieved by having the foreign key (in the associated table) reference a

primary key value (in the primary - or parent - table). Because of this, we need to
ensure that data on both sides of the relationship remain intact.

 The referential integrity rule states that “whenever a foreign key value is used it
must reference a valid, existing primary key in the parent table”.

 For example - Consider two tables

Database Management Systems 4 - 14 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

In above relation, the registration no. R555 is not existing still if it is present in the
course table, then we say that it is not following referential integrity constraint.

 Review Question

1. Explain the concepts of referential integrity constraint and entity integrity constraint with
example. SPPU : May-18, Dec.-19, End Sem, Marks 5

 4.6 Enterprise Constraints

Enterprise constraints are also called as semantic constraints.

The enterprise constraints are basically the additional rules specified by users or
database administrators. These constraints are normally based on multiple tables.

Examples of enterprise constraints are –

1) The salary of teacher should not exceed the salary of Principal.

2) A Student can not opt for more than two courses at a time.

3) A class can have maximum 50 students.

Part III : Database Design

 4.7 Features of Good Relational Designs
 SPPU : Dec.-18, Aug.-17, Marks 5

There are two primary goals of relational database design –

i) To generate a set of relation schemas that allows us to store information without
unnecessary redundancy and

ii) To allow us to retrieve information easily.

 Example 4.7.1 Explain what is meant by repetition of information and inability to represent

information. Explain why each of these properties may indicate a bad relational database
design. SPPU ; Dec.-18, End Sem, Marks 5

Solution : Repetition of information and inability to represent the required information
are considered to be bad features of relational design. Consider following schema

EmpID EName Salary DeptID DeptName DeptLoc

1 AAA 10000 101 XYZ Pune

2 BBB 20000 101 XYZ Pune

3 CCC 30000 101 XYZ Pune

4 DDD 40000 102 PQR Mumbai

Database Management Systems 4 - 15 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Now if we want to insert a record 5,EEE,50000 for the DeptID 101, then again there
will be repletion of information about DeptID, DeptName and DeptLoc i.e.
(101,XYZ,Pune). That means if we want to perform some operation (insertion, updation,
deletion) on the relational schema then it should not cause repetition of information.

The above scenario indicates bad database design.

Inability to represent information is a condition where a relationship exists among
only a proper subset of the attributes in a relation. This is bad relational database design
because all the unrelated attributes must be filled with null values otherwise a tuple
without the unrelated information cannot be inserted into the relation.

 Review Question

1. Explain different features of good relational database design.
 SPPU : Aug.-17, In Sem, Marks 5

 4.8 Data Redundancy and Update Anomalies

Definition : Data redundancy is a condition created in database in which same piece
of data is held at two different places.

Redundancy is at the root of several problems associated with relational schemas.

Problems caused by redundancy : Following problems can be caused by redundancy-

i) Redundant storage : Some information is stored repeatedly.

ii) Update anomalies : If one copy of such repeated data is updated then
inconsistency is created unless all other copies are similarly updated.

iii) Insertion anomalies : Due to insertion of new record repeated information get
added to the relation schema.

iv) Deletion anomalies : Due to deletion of particular record some other important
information associated with the deleted record get deleted and thus we may lose
some other important information from the schema.

Example : Following example illustrates the above discussed anomalies or redundancy
problems.

Consider following Schema in which all possible information about Employee is
stored.

Database Management Systems 4 - 16 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

1) Redundant storage : Note that the information about DeptID, DeptName and
DeptLoc is repeated.

2) Update anomalies : In above table if we change DeptLoc of Pune to Chennai, then
it will result inconsistency as for DeptID 101 the DeptLoc is Pune. Or otherwise, we
need to update multiple copies of DeptLoc from Pune to Chennai. Hence this is an
update anomaly.

3) Insertion anomalies : For above table if we want to add new tuple say
(5, EEE,50000) for DeptID 101 then it will cause repeated information of (101,
XYZ,Pune) will occur.

4) Deletion anomalies : For above table, if we delete a record for EmpID 4, then
automatically information about the DeptID 102, DeptName PQR and DeptLoc
Mumbai will get deleted and one may not be aware about DeptID 102. This causes
deletion anomaly.

 4.9 Normalization
 SPPU : Dec.-17, Marks 5

 Normalization is the process of reorganizing data in a database so that it meets two
basic requirements :

1) There is no redundancy of data (all data is stored in only one place) and

2) Data dependencies are logical (all related data items are stored together)

Need for normalization

1) It eliminates redundant data.

2) It reduces chances of data error.

3) The normalization is important because it allows database to take up less disk
space.

Database Management Systems 4 - 17 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

4) It also help in increasing the performance.
5) It improves the data integrity and consistency.

 Review Question

1. What is normalization ? What is the need of normalized database ?
 SPPU : Dec.-17, End Sem, Marks 5

 4.10 Atomic Domains and First Normal Form

By atomic value, we mean that each value in the domain is indivisible.
The first normal form rule defines that all the attributes in a relation must have atomic

domains. The values in an atomic domain are indivisible units.
The table is said to be in 1NF if it follows following rules -
i) It should only have single (atomic) valued attributes/columns.
ii) Values stored in a column should be of the same domain.
iii) All the columns in a table should have unique names.
iv) And the order in which data is stored, does not matter.

Consider following student table

Student

sid sname Phone

1 AAA 11111

22222

2 BBB 33333

3 CCC 44444

55555

As there are multiple values of phone number for sid 1 and 3, the above table is not in
1NF. We can make it in 1NF. The conversion is as follows -

sid sname Phone

1 AAA 11111

1 AAA 22222

2 BBB 33333

3 CCC 44444

3 CCC 55555

Database Management Systems 4 - 18 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Review Question

1. Suggest and explain three different techniques to achieve 1NF using suitable example.

 4.11 Decomposition using Functional Dependencies
 SPPU : Oct.-19, May-18, Marks 5

Definition : A functional dependency A->B in a relation holds if two tuples having
same value of attribute A also have the same value for attribute B. It is denoted by A->B
where A is called determinant and B is called dependent.

For example - Consider Student table as follows -

Roll Name City

1 AAA Mumbai

2 BBB Pune

3 CCC Gandhinagar

Here
Roll ->Name hold
But
Name->City does not hold

 In above table, student roll number is unique hence each student’s name and city
can be uniquely identified using his roll number.

 But using name we cannot uniquely identify his/her city because there can be same
names of the students. Similarly using city name we can not identify the student
uniquely. As in the same city may belong to multiple students.

Another example -

Consider a relation in which the roll of the student and his/her name is stored as
follows :

R N

1 AAA

2 BBB

3 CCC

4 DDD

5 EEE

Fig. 4.11.1 : Table which holds functional dependency i.e. R->N

Database Management Systems 4 - 19 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Here, R->N is true. That means the functional dependency holds true here. Because for
every assigned RollNuumber of student there will be unique name. For instance : The
name of the Student whose RollNo is 1 is AAA. But if we get two different names for the
same roll number then that means the table does not hold the functional dependency.
Following is such table -

R N

1 AAA

2 BBB

3 CCC

1 XXX

2 YYY

Fig. 4.11.2 : Table which does not hold functional dependency

In above table for RollNumber 1 we are getting two different names - “AAA” and
“XXX”. Hence here it does not hold the functional dependency.

Trivial FD : The functional dependency A->B is trivial if B is a subset of A.

For example (A,B}->A

Non Trivial FD : The functional dependency A->B is non trivial if B is not a subset
of A.

For example {A,B}->C

 Example 4.11.1 For the given below relation R(A,B,C,D,E) and its instance, check whether

FDs given hold or not. Give reasons.

i) A->B ii) B->C iii) D->E iv) CD->E

A B C D E

a1 b1 c1 d1 e1

a1 b2 c1 d1 e1

a2 b2 c1 d2 e3

a2 b3 c3 d2 e2

Database Management Systems 4 - 20 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution : Association among attributes is known as Functional Dependencies (FD). AFD
X->Y require that the value of X uniquely determines the value of Y where X and Y are set
of attributes.

For example,

Roll_No -> Name : the value of Roll_No uniquely determines the Name.

Now from, the given relation and its instance -

i) The FD A->B does not hold because – a1 has two different values b1 and b2.
Similarly a2 has two different values and those are b2 and b3.

ii) The FD B->C holds true.

iii) D->E does not hold true because d2 gives two different values e3 and e2.

iv) CD->E hold true as (c1,d1) gives e1 , (c1,d2) gives e3 and (c3,d2) gives e2. All are
uniquely identified.

 4.11.1 Inference Rules

The closure set is a set of all functional dependencies implied by a given set F. It is

denoted by F+

The closure set of functional dependency can be computed using basic three rules
which are also called as Armstrong’s Axioms.

These are as follows -

i) Reflexivity : If X Y, then X Y

ii) Augmentation : If X Y, then XZ YZ for any Z

iii) Transitivity : If X Y and Y Z, then X Z

In addition to above axioms some additional rules for computing closure set of
functional dependency are as follows -

 Union : If X Y and X Z then X YZ

 Decomposition : If X YZ, then X Y and X Z

Let us understand how to apply Armstrong’s axioms for finding the closure of set of
functional dependencies -

 Example 4.11.2 Given FD’s for relation R{A,B,C,D,E,F}, Find closure of FD set by applying

Armstrong’s Axioms.

A->B, A->C, CD->E, CD->F, B->E
Solution :

Step 1 : A -> gives A attribute itself by reflexivity. It is called trivial production.

Database Management Systems 4 - 21 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

A -> B and A -> C, Hence by union rule A -> BC

A -> B and B -> E, Hence by transitivity rule A -> E ∴ (A)+ = {A,B,C,E}

Step 2 : B -> gives B itself

And B -> E ∴ (B)+= {B,E}

Step 3 : CD -> gives CD itself. It is trivial.

CD -> E, CD -> F, Hence by union rule CD -> EF ∴ (CD)+= {C,D,E,F}

So by omitting trivial productions, we get ∴ F+ = {A -> BC, A -> E, B -> E, CD -> EF}

 Example 4.11.3 Compute the closure of the following set F of functional dependencies for

relational schema R = (A,B,C,D,E) A -> BC, CD -> E, B -> D, E -> A

Solution : The closure of F is denoted by F+ and it can be computed in following steps

Step 1 : As A -> BC is given we get

A -> B and A -> C By decomposition rule

Step 2 : As

A -> B (Refer step 1)

B -> D (given)

A -> D (transitivity rule)

Step 3 :

A -> CD because A -> C and A -> D (From step 1 and Step 2 applying

 union rule)

Step 4 :

CD -> E (given)

A -> E (transitive rule as A->CD, CD->E

 hence A->E)

Database Management Systems 4 - 22 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 5 :

Since A → A, we have (reflexive)

A → ABCDE from the above steps (union)

Step 6 :

Since E → A, E → ABCDE (transitive)

Step 7 :

Since CD → E, CD → ABCDE (transitive)

Step 8 :

Since B → D and BC → CD, BC → ABCDE (augmentative, transitive)

Step 9 :

Also, C → C, D → D, BD → D

Thus any functional dependency with A, E, BC, or CD on the left hand side of the
arrow is in F+

 Example 4.11.4 Give Armstrong’s axioms and using it find the closure of following FD set.

A->B, AB->C, D->AC, D->E
Solution :

Step 1 : Consider the rules D -> AC and D -> E ∴ D -> ACE (Union rule)

Step 2 : Consider AB -> C then we get ∴ A -> C and B -> C (decomposition rule)

Thus F+ ={A -> C, B -> C, D -> ACE}

 Example 4.11.5 R = {A,B,C,D,E,F} and FDs are A -> BC E -> CF B -> E CD -> EF compute

closure of {A,B}+

Solution :

Step 1 : A -> BC ∴ A -> B and A -> C (decomposition)

So we add A, B, C in closure set

Database Management Systems 4 - 23 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 2 : E -> CF ∴ E -> C and E -> F (decomposition)

Step 3 : B -> E ∴ B -> C, F

So we add E and F in closure set

Hence

{A,B}+ = {A,B,C,E,F}
 Example 4.11.6 Consider schema EMPLOYEE(E-ID, E-NAME, E-CITY, E-STATE) and

FD = {E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY-> E-STATE}

(1) Find attribute of closure for(E-ID)+

(2) Find(E-NAME)+
Solution :

1) Finding (E-ID)+ means finding the closure. In this process we try to find out, all the
attributes that can be derived from E-ID.

 As E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, We add E-NAME, E-ID,

E-CITY, E-STATE to (E-ID)+

 As E-ID->E-CITY, E-CITY->E-STATE, we add E-STATE to (E-ID)+ ∴ (E-ID)+ = {E-ID, E-NAME, E-CITY, E-STATE)

2) E-NAME derives no rule. Hence (E-NAME)+ = {E-NAME}

 4.11.2 Keys and Functional Dependencies

 For a given relation R = {A1, A2, A3, …, An} K is a key of R then if closure

(K)+ = {A1, A2, …, An} and no subset of K i.e. X such that (X)+ = A1, A2, …, An}

 In other words there are two conditions -

1) The (K)+ contains all the attributes of relations R -

2) All subset X of K, (X)+ never contains all the attributes of R i.e.

 (X)+ ≠ {A1, A2, …, An}

 If only one subset of R satisfy above condition then it is known as primary key.

 If more than one subset of R satisfies above condition then all these subsets are
recognized as candidate keys. In that case one of the candidate key is also
considered as primary key.

 A superset of candidate key K is known as superkey.

Database Management Systems 4 - 24 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 4.11.7 Give R = {A,B,C,G,H,I}. The following set F of functional dependencies holds

A -> B, A -> C, CG -> H, CG -> I , B -> H

Computer AG+ . Is AG candidate key ?
Solution :

Step 1 : A -> B, A -> C, Hence add A, B, C to the set of AG+.

Step 2 : A -> B B -> H, hence add H to the set of AG+

Step 3 : CG -> I, hence add I to the set of AG+. Also add G to the set.

Thus (AG)+ = {A,B,C,G,H,I} = Relation R

Hence (AG)+ is a candidate key.

 Example 4.11.8 Compute the closure of R(A,B,C,D,E) with the following set of functional

dependencies A -> BC, CD -> E, B -> D, E -> A

List the candidate keys of R
Solution :

Step 1 : A -> BC hence add A,B,C to (A)+

A -> BC can be decomposed into A -> B and A -> C. Also B -> D. Thus A -> D is also
true by transitivity rule.

Hence add D to (A)+

A -> C, A -> D ∴ By union rule A -> CD.

As CD -> E add E to (A)+ ∴ (A)+ = {A,B,C,D,E}

Step 2 : Consider (B)+ = {B,D}≠R hence it is not a candidate key

Step 3 : Consider (BC)+ = {B,C,D,E,A} = {A,B,C,D,E} = R. Hence it is a candidate key

Step 4 : Consider CD -> E, E -> A, hence (CD)+ = {A,B,C,D,E}.

 Hence it is a candidate key

Step 5 : Consider E -> A, A -> BC, B -> D, CD -> E.

 Hence (E)+ = {A,B,C,D,E} is a candidate key.

Thus we get the candidate keys as {A,BC, CD, E}

Database Management Systems 4 - 25 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 4.11.9 Consider schema R = (A,B,C,G,H,I) and the set F of functional dependencies

{A -> B, A -> C, CG -> H, CG -> I, B -> H}. Use (F)+ Prove (AG)+ -> I
Solution :

Step 1 : As A -> B

B -> H ∴ A -> H (Transitivity rule)

Step 2 : CG -> H

CG -> I ∴ CG -> HI (Union rule)

Step 3 : A -> C

CG -> I

AG -> I (Pseudo transitive rule)

Thus AG -> I is proved

(F)+ = {A -> B, A -> C, CG -> H, CG -> I, B -> H, A -> H, CG -> HI, AG -> I}

 Review Questions

1. Explain in brief with suitable example full functional dependency and partial dependency.
 SPPU : Oct.-19, In Sem, Marks 3

2. What is the impact of insert, update and delete anomaly on overall design of database ? How
normalization is used to remove these anomalies ? SPPU : May-18, End Sem, Marks 5

 4.12 Equivalence and Minimal Cover

 A set of functional dependencies E is said to covered by F if every FD in E is also in
F+ , i.e. every dependency in F can be inferred from E and vice versa.

 Two sets of FDs E and F are equivalent if E+ = F+.

 If E and F are equivalent only if both E+ = F+

1) E covers F

2) F covers E holds
 Example 4.12.1 Here are two sets of FDs for R(A,B,C,D,E). Are they equivalent ?

1) A -> B 2) A -> BC
 AB -> C D -> AE
 D -> AC
 D -> E

Database Management Systems 4 - 26 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution : Two sets of FDs are said to be equivalent if

 Rule 1 : If FD2 ⊃ FD1. That means all FDs of FD1 can be derived from all the FDs of
FD2.

 Rule 2 : If FD1 ⊃ FD2. That means all FDs of FD2 can be derived from all the FDs of
FD1.

 Rule 3 : If both rule 1 and rule 2 are true then FD1 = FD2.

For given two sets

Step 1 : We will first check if all the FDs of FD1 are present in FD2

A -> B is present in FD1. A -> BC is in FD2, that also means

A -> B and A -> C by decomposition rule

Similarly AB -> C is in FD1

 (A)+ = {A,B,C}

Hence

(A)+ = {A,B,C}

 (AB)+ = {A,B,C} As D -> AE then by decomposition rule,

D -> AC D -> A, D -> E

i.e D -> A, D -> C by decomposition rule.

As A -> B, then by transitivity rule D -> A,

A -> B, D -> B

The D -> A, A -> B and C (D)+ = {A,B,C,D,E}

D -> A, D -> B, D -> C by transitivity rule

D -> E is given

 (D)+ = {A,B,C,D,E}

Step 2 : We will first check if all the FDs of FD2 are present in FD1

 (A)+ = {A,B,C} (A)+ = {A,B,C}

 (AC)+ = {A,B,C} (D)+ = {A,B,C,D,E}

 (D)+ = {A,B,C,D,E}

Thus from Step 1 and Step 2, FD2 ⊃ FD1 and FD1 ⊃ FD2. Hence both the sets are
equivalent.

 Example 4.12.2 Consider two sets of functional dependency.
F = {A -> C, AC -> D, E -> AD, E -> H} and G = {A -> CD, E -> AH}. Are they equivalent ?

Database Management Systems 4 - 27 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution : We will find the FDs of both F and G and then check for F and G ⊃ FD2 and
G ⊃ F.

Step 1 : For F

Using G functional dependencies -

 (A)+ = {A,C,D} As A -> CD is in G

 (AC)+ = {A,C,D} As A -> CD is in G

 (E)+ = {A,C,D,E,H} As E -> AH, A -> CD is in G

Using F functional dependencies -

 (A)+ = {A,C,D} As A -> C and AC -> D is in F

 (AC)+ = {A,C,D} AC -> D is in F

 (E)+ = {A,C,D,E,H} As E -> AD, E -> H and A -> C is in F

Step 2 : For G

Using F functional dependencies -

 (A)+ = {A,C,D} As A -> C and AC -> D is in F

 (E)+ = {A,C,D,E,H} As E -> AD, E -> H is in F

Using G functional dependencies -

 (A)+ = {A,C,D} As A -> CD is in G

 (E)+ = {A,C,D,E,H} As E -> AH and A -> CD is in G

Step 3 : From both these steps

G⊇F and F⊇G

Hence F and G are equivalent.

 Example 4.12.3 Given below are two sets of FDs for a relation R(A,B,C,D,E), Are they

equivalent ?

i) A->B, AB->C, D->AC, D->E ii) A->BC, D->AE

Solution : We will assume these relations as F and G. That means -

F : A -> B, AB -> C, D -> AC, D -> E

G : A -> BC, D -> AE

Now we will find the F+ and G+ as follows

Database Management Systems 4 - 28 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 1 : For F

Using G functional dependencies -

 (A)+ = {A,B,C}

 (AB)+ = {A,B,C}

 (D)+ = {D,A,C,E,B}

Using F functional dependencies -

 (A)+ = {A,B,C}

 (AB)+ = {A,B,C}

 (D)+ = {D,A,C,E,B}

Step 2 : For G

Using F functional dependencies –

 (A)+ = {A,B,C}

 (D)+ = {D,A,C,E,B}

Using G functional dependencies -

 (A)+ = {A,B,C}

 (D)+ = {D,A,C,E,B}

Step 3 : From both these steps

G⊇F and F⊇G

Hence F and G are equivalent.

Minimal cover

Formal definition : A minimal cover for a set F of FDs is a set G of FDs such that :

1) Every dependency in G is of the form X -> A, where A is a single attribute.

2) The closure F+ is equal to the closure G+.

3) If we obtain a set H of dependencies from G by deleting one or more dependencies

or by deleting attributes from a dependency in G, then F+ ≠ H+.

Concept of extraneous attributes

Definition : An attribute of a functional dependency is said to be extraneous if we can
remove it without changing the closure of the set of functional dependencies. The formal
definition of extraneous attributes is as follows :

Database Management Systems 4 - 29 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Consider a set F of functional dependencies and the functional dependency in F

 Attribute A is extraneous in α if A ∈ α and F logically implies

(F – {}) ∪ {(– A) }

 Attribute A is extraneous in β if A∈ β and the set of functional dependencies

(F – {}) ∪ {((– A)} logically implies F.

Algorithm for computing canonical cover for set of functional dependencies F

Fc = F

repeat

Use the union rule to replace any dependencies in Fc of the form

1 1 and 1 2 and 1 1 2
Find a functional dependency in Fc with an extraneous attribute either in

or in .
/* The test for extraneous attributes is done using Fc, not F */

If an extraneous attribute is found, delete it from in Fc .

until (Fc does not change)

 Example 4.12.4 Consider the following functional dependencies over the attribute set

R(ABCDE) for finding minimal cover FD = {A -> C, AC -> D, B -> ADE}.

Solution :

Step 1 : Split the FD such that R.H.S contain single attribute. Hence we get

 A -> C

 AC -> D

 B -> A

 B -> D

 B -> E

Step 2 : Find the redundant entries and delete them. This can be done as follows -

 For A -> C : We find (A)+ by assuming that we delete A -> C temporarily. We get

(A)+={A}. Thus from A it is not possible to obtain C by deleting A -> C. This means
we can not delete A -> C.

 For AC -> D : We find (AC)+ by assuming that we delete AC -> D temporarily. We

get (AC)+= {AC}. Thus by such deletion it is not possible to obtain D. This means we
can not delete AC -> D.

Database Management Systems 4 - 30 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 For B -> A : We find (B)+ by assuming that we delete B -> A temporarily. We get

(B)+= {BDE}. Thus by such deletion it is not possible to obtain A. This means we can
not delete B -> A.

 For B -> D : We find (B)+ by assuming that we delete B -> D temporarily. We get

(B)+= {BEACD}. This shows clearly that even if we delete B -> D we can obtain D.
This means we can delete B -> A. Thus it is redundant.

 For B -> E : We find (B)+ by assuming that we delete B -> E temporarily. We get

(B)+= {BDAC}. Thus by such deletion it is not possible to obtain E. This means we
can not delete B->E.

To summarize we get now

A -> C

AC -> D

B -> A

B -> E

Thus R.H.S gets simplified.

Step 3 : Now we will simplify L.H.S.

Consider AC -> D. Here we can split A and C. For that we find closure set of A and C.

 (A)+ = (AC)

 (C)+ = (C)

Thus C can be obtained from both A as well as C. That also means we need not have to
have AC on L.H.S. Instead, only A can be allowed and C can be eliminated. Thus after
simplification we get

 A -> D

To summarize we get now

 A -> C

 A -> D

 B -> A

 B -> E

Thus L.H.S gets simplified.

Step 3 : The simplified L.H.S. and R.H.S can be combined together to form

 A -> CD

Database Management Systems 4 - 31 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 B -> AE

This is a minimal cover or canonical cover of functional dependencies.

 Example 4.12.5 A relation R(A,C,D,E,H) satisfies the following FDs A -> C, AC -> D,

E -> AD, E -> H. Find the canonical cover for this set of FD’s.

Solution : For obtaining canonical cover we have to find the redundant entries from both
LHS and RHS and eliminate them.

Step 1 : Suppose we minimize LHS first, then go through each production rule one by
one considering LHS.

A -> C , Keep it as it is.

AC -> D, Here A -> C and A -> D, So we remove A -> C , hence A -> D is kept by
eliminating C from LHS.

E -> AD, keep it as it is as E is a single attribute at LHS.

E -> H, keep it as it is

Step 2 : Now we will minimize RHS.

A -> C , keep it as it is

A -> D, keep it as it is

E -> AD. That means E -> A and E -> D.

As A -> D is also present in the FD, so we get E -> A and A -> D. Thus E -> D is
transitive . Hence neglect it. So we keep E -> A only

E -> H, Keep it as it is.

Step 3 : From steps 1 and 2, we get minimal cover of FD as
A -> C

A -> D

E -> A

E -> H

Hence the canonical for is

A -> CD

E -> AH

 Example 4.12.6 What is functional dependency ? Find the minimal cover using the minimal

cover algorithm for the following functional dependency

F = {AB -> D,B -> C, AE -> B, A -> D, D -> EF}

Database Management Systems 4 - 32 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

Step 1 : We will make right hand sides atomic

AB -> D

B -> C

AE -> B

A -> D

D -> E

D -> F

Step 2 : Now we will remove redundant FDs using RHS

 For AB -> D. Now compute (AB)+ without considering the AB -> D i.e.{G-(AB->D)}

We get (AB)+ = {ABCDEF}. That means we can remove AB -> D as it is redundant
entry.

Hence grammar is

B -> C

AE -> B

A -> D

D -> E

D -> F

 For B -> C compute (B)+ by considering {G - (B -> C)}

(B)+ = {AEBDF}. As C is not present in this set. That means B -> C is not redundant. So
we can not remove it.

Hence grammar is

B -> C

AE -> B

A -> D

D -> E

D -> F

 For AE -> B, we will compute (AE)+ under (G – (AE -> B))

(AE)+ = {AEDF} as B is not present in (AE)+. So we cannot remove AE -> B from
grammar. Hence grammar will be

B -> C

Database Management Systems 4 - 33 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

AE -> B

A -> D

D -> E

D -> F

For A -> D, we will compute(A)+ under (G - (A -> D))

(A)+ = {AEBC}. As D is not present in (A)+, hence we can not eliminate A -> D. The
grammar is

B -> C

AE -> B

A -> D

D -> E

D -> F

 For D -> E, compute (D)+ under (G - (D -> E))

(D)+ = {DF}. As E is not present in (D)+, We cannot remove D -> E

 For D -> F, compute (D)+ under (G-(D -> F))

(D)+ = {DE}. As F is not present in (D)+, We cannot remove D -> F. Finally the grammar
is

B -> C

AE -> B

A -> D

D -> E

D -> F

Step 3 : Remove redundant entries based on RHS

 B -> C, A -> D, D -> E and D -> F as LHS is atomic.

 Now we consider AE -> B

For A : compute E+ with respect to (G - (AE→B) ∪ (E→B))

 E+ using {B→C, E→B, A→D, D→E, D→F} = EBC

 E+ doesn’t contain A, so A not redundant in AE→B

 For E : compute A+ with respect to (G - (AE→B) ∪ (A→B))

 A+ using {B→C, A→B, A→D, D→E, D→F} = ABDEFC

 A+ contains E, so E is redundant in AE→B

Database Management Systems 4 - 34 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Hence we consider AE -> B as A -> B.

Finally minimal closure is {B -> C,A -> B, A -> D, D -> E, D -> F}

 Example 4.12.7 Using the minimal cover algorithm, find the minimal cover for the following

FDs :

F = {AB -> C, A -> D, BD -> C, D -> BG, AE -> F}.

Solution : We will make right hand side atomic
AB -> C
A -> D
BD -> C
D -> B
D -> G
AE -> F

Step 2 : Now we will remove redundant FDs using RHS
 For AB -> C we compute (AB)+ without considering the rule AB -> C i.e.

(G - (AB -> C)). We get (AB)+ = {ABDBGC} i.e C is present by other way also in the
set. Hence we can remove AB -> C as it is redundant entry.

 For A -> D, we compute (A)+ using (G - (A -> D)). We get (A)+ = {A}. We can not get
D. So it is not a redundant entry and we can not remove it.

 For BD -> C, We compute (BD)+ using (G - (BD -> C)). We get (BD)+ ={BDG}. This is
also not a redundant entry and we can not remove it.

 For D -> B. Let us compute (D)+ using (G - (D -> B)). We get (D)+={DG}. This again
indicates that we can not get B without the rule D -> B. Hence it is not a redundant
entry and we can not remove it.

 Similarly, we can conclude For D -> G and AE -> F as not redundant entries.
 Finally, the grammar will be

A -> D

BD -> C

D -> B

D -> G

AE -> F

Step 2 : Now we will remove redundant entries based on LHS.

The A -> D, D -> B, D -> G remain as it is in minimal cover as LHS is atomic.

Database Management Systems 4 - 35 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Now consider BD -> C, We can replace this by B -> C and eliminate D, as D -> B is
present.

Similarly consider AE -> F. But as we cannot replace it either by A->F or E->F. So it is
not redundant.

The minimal cover is {A->D, D->B. D->G, B->C, AE->F}.

 4.13 Algorithms for Decomposition

 Decomposition is the process of breaking down one table into multiple tables.

 Formal definition of decomposition is -

 A decomposition of relation schema R consists of replacing the relation schema by
two relation schema that each contain a subset of attributes of R and together
include all attributes of R by storing projections of the instance.

 For example - Consider the following table

Employee_Department table as follows -

Eid Ename Age City Salary Deptid DeptName

E001 ABC 29 Pune 20000 D001 Finance

E002 PQR 30 Pune 30000 D002 Production

E003 LMN 25 Mumbai 5000 D003 Sales

E004 XYZ 24 Mumbai 4000 D004 Marketing

E005 STU 32 Hyderabad 25000 D005 Human

Resource

We can decompose the above relation Schema into two relation schemas as Employee
(Eid, Ename, Age, City, Salary) and Department (Deptid, Eid, DeptName) as follows -

Employee Table

Eid Ename Age City Salary

E001 ABC 29 Pune 20000

E002 PQR 30 Pune 30000

E003 LMN 25 Mumbai 5000

E004 XYZ 24 Mumbai 4000

E005 STU 32 Hyderabad 25000

Database Management Systems 4 - 36 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Department Table

Deptid Eid DeptName

D001 E001 Finance

D002 E002 Production

D003 E003 Sales

D004 E004 Marketing

D005 E005 Human Resource

 The decomposition is used for eliminating redundancy.

 For example : Consider following relation Schema R in which we assume that the
grade determines the salary, the redundancy is caused

Schema R

 Hence, the above table can be decomposed into two Schema S and T as follow :

Schema S Schema T

 Name eid deptname Grade Grade Salary

 AAA 121 Accounts 2 2 8000

 AAA 132 Sales 3 3 7000

 BBB 101 Marketing 4 4 7000

 CCC 106 Purchase 2 2 8000

Problems related to decomposition :

Following are the potential problems to consider :
1) Some queries become more expensive.
2) Given instances of the decomposed relations, we may not be able to reconstruct the

corresponding instance of the original relation!

Database Management Systems 4 - 37 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

3) Checking some dependencies may require joining the instances of the decomposed
relations.

4) There may be loss of information during decomposition.

Properties associated with decomposition

There are two properties associated with decomposition and those are -

1) Loss-less join or non loss decomposition : When all information found in the
original database is preserved after decomposition, we call it as loss less or non loss
decomposition.

2) Dependency preservation : This is a property in which the constraints on the
original table can be maintained by simply enforcing some constraints on each of
the smaller relations.

 4.14 Lossless Join SPPU : May-18, Marks 6

The lossless join can be defined using following three conditions :

i) Union of attributes of R1 and R2 must be equal to attribute of R. Each attribute of R
must be either in R1 or in R2.

 Att(R1) ∪ Att(R2) = Att(R)

ii) Intersection of attributes of R1 and R2 must not be NULL.

Att(R1) ∩ Att(R2) ≠ Φ

iii) Common attribute must be a key for at least one relation (R1 or R2)

Att(R1) ∩ Att(R2) -> Att(R1)

or Att(R1) ∩ Att(R2) -> Att(R2)

 Example 4.14.1 Consider the following relation R(A, B, C, D)and FDs A->BC, is the

decomposition of R into R1(A, B, C), R2(A, D). Check if the decomposition is lossless join or

not.

Solution :

Step 1 : Here Att(R1) ∪ Att(R2) = Att(R) i.e R1(A,B,C) ∪ R2(A,D) = (A,B,C,D) i.e R.

Thus first condition gets satisfied.

Step 2 : Here R1 ∩ R2 = {A}. Thus Att(R1) ∩ Att(R2) ≠ Φ. Here the second condition gets
satisfied.

Database Management Systems 4 - 38 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 3 : Att(R1) ∩ Att(R2) -> {A}. Now (A)+ = {A,B,C} i.e. attributes of R1. Thus the third
condition gets satisfied.

This shows that the given decomposition is a lossless join.

 Example 4.14.2 Consider the following relation R(A, B, C, D, E, F) and FDs A->BC, C->A,

D->E, F->A, E->D is the decomposition of R into R1(A, C, D), R2(B, C, D) and

R3 (E, F, D). Check for lossless.

Solution :

Step 1 : R1 ∪ R2 ∪ R3 = R. Here the first condition for checking lossless join is satisfied as
(A,C,D) ∪ (B,C,D) ∪ (E,F,D) = {A,B,C,D,E,F} which is nothing but R.

Step 2 : Consider R1∩ R2 = {CD} and R2∩R3 = {D}. Hence second condition of
intersection not being gets satisfied.

Step 3 : Now, consider R1(A, C, D) and R2(B, C, D). We find R1∩R2 = {CD}

(CD)+ = {ABCDE} attributes of R1 i.e.{A, C, D}. Hence condition 3 for checking
lossless join for R1 and R2 gets satisfied.

Step 4 : Now, consider R2(B, C, D) and R3(E, F, D) . We find R2∩R3={D}.

(D)+ = {D, E} which is neither complete set of attributes of R2 or R3.

[Note that F is missing for being attribute of R3].

Hence it is not lossless join decomposition. Or in other words we can say it is a lossy
decomposition.

 Example 4.14.3 Suppose that we decompose schema R = (A,B,C,D,E) into (A,B,C) (C,D,E)

Show that it is not a lossless decomposition.

Solution :

Step 1 : Here we need to assume some data for the attributes A, B, C, D, and E. Using
this data we can represent the relation as follows -

Relation R

A B C D E

a 1 x p q

b 2 x r s

Database Management Systems 4 - 39 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Relation R1 = (A,B,C)

A B C

a 1 x

b 2 x

Relation R2 = (C,D,E)

C D E

x p q

x r s

Step 2 : Now we will join these tables using natural join, i.e. the join based on common
attribute C. We get R1 ⋈ R2 as

A B C D E Here we get

more rows

or tuples

than original

relation R

a 1 x p q

a 1 x r s

b 2 x p q

b 2 x r s

Clearly R1 ⋈ R2 R. Hence it is not lossless decomposition.

Review Question

1. List the properties of decomposition. Explain lossless join with example.
 SPPU : May-18, End Sem, Marks 6

 4.15 Dependency Preservation

 Definition : A decomposition D = {R1, R2, R3….Rn} of R is dependency preserving
for a set F of functional dependency if - (F1 ∪ F2 ∪ … ∪ Fm) = F.

 If decomposition is not dependency-preserving, some dependency is lost in the
decomposition.

 Example 4.15.1 Consider the relation R (A, B, C) for functional dependency set {A -> B and

B C} which is decomposed into two relations R1 = (A, C) and R2 = (B, C). Then check

if this decomposition dependency preserving or not.

Database Management Systems 4 - 40 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution : This can be solved in following steps :

Step 1 : For checking whether the decomposition is dependency preserving or not we
need to check following condition

 F+ = (F1 ∪ F2)+

Step 2 : We have with us the F+ ={ A->B and B->C }

Step 3 : Let us find (F1)+ for relation R1 and (F2)+ for relation R2

R1(A,C) R2(B,C)

A->A Trivial

C->C Trivial

A->C ∵ In (F)+A->B->C and it is Nontrivial

AC->AC Trivial

A->B but is not useful as B is not part of R1
set

We can not obtain C->A

 B->B Trivial

C->C Trivial

B->C ∵ In (F)+ B->C and it is

Non-Trivial

BC->BC Trivial

We can not obtain C->B

Step 4 : We will eliminate all the trivial relations and useless relations. Hence we can
obtain R1 and R2 as

R1(A,C) R2(B,C)

A->C Nontrivial B->C Non-Trivial

 (F1∪ F2)+ = {A->C, B->C} ≠ {A->B, B->C} i.e. (F)+

Thus the condition specified in step 1 i.e. F+ = (F1 ∪ F2)+ is not true. Hence it is not

dependency preserving decomposition.

 Example 4.15.2 Let relation R(A, B, C, D) be a relational schema with following functional

dependencies {A->B, B->C, C->D and D->B}. The decomposition of R into (A, B), (B, C)

and (B, D). Check whether this decomposition is dependency preserving or not.

Solution :

Step 1 : Let (F)+ = {A->B, B->C, C->D, D->B}.

Database Management Systems 4 - 41 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 2 : We will find (F1)+, (F2)+, (F3)+ for relations R1(A,B) , R2(B,C) and R3(B,D) as
follows -

R1(A,B) R2(B,C) R3(B,D)

A->A Trivial

B->B Trivial

A->B ∵ (F)+

and it’s non Trivial

B->A can not be

obtained

AB->AB

 B->B Trivial

C->C Trivial

B->C ∵ (F)+ and

it’s non Trivial

C->B ∵ In (F)+ and

C->D->C and it is

Nontrivial

BC->BC Trivial

 B->B Trivial

D->D Trivial

B-> D ∵ (F)+ as and

B->C->D and it’s non

Trivial

D->B ∵ (F)+ and it’s

non Trivial

BD->BD Trivial

Step 3 : We will eliminate all the trivial relations and useless relations. Hence we can
obtain R1 ∪ R2 ∪ R3 as

R1(A,B) R2(B,C) R2(B,D)

A->B

 B->C

C->B

 B-> D

D->B

Step 4 : As from above FD’s we get

Step 5 : This proves that F+ = (F1 ∪ F2 ∪ F3)+. Hence given decomposition is
dependency preserving.

 Example 4.15.3 Given relation r(X,Y,W,Z,P,Q) and the set F = {XY->W, XW->P, PQ->Z,

XY->Q}. Consider the decomposition R1(Z,P,Q), R2(X,Y,Z,P,Q). Is this decomposition

lossless or lossy ? Use lossless join algorithm.

Database Management Systems 4 - 42 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

Step 1 : Construct a table with six columns for given six attributes i.e. X, Y, W, Z, P, Q and
two rows for given two relation i.e. R1 and R2.

 X Y W Z P Q

R1

R2

Step 2 : Fill in the entries as follows -

R1 (Z, P, Q) and R2 (X, Y, Z, P, Q)

Consider R1 having attributes Z, P, Q so put ‘’ in those row and put ‘’ other
remaining rows same as R2 having attributes X, Y, Z, P, Q so put ‘’ in those row and put
‘’ other remaining rows.

 X Y W Z P Q

R1 1X 1Y 1W Z P Q

R2 X Y 2W Z P Q

Step 3 :

i) Considering XY W, we check if the two rows of the table have the same value
under the columns XY that make up the determinant of the FD. Since the rows do
not have identical values, the table will remain unchanged and we repeat step 3 by
considering another FD.

ii) Considering XW P, we check if the two rows of the table have the same value
under the columns XW that make up the determinant of the FD. Since the rows do
not have identical of values, the table will remain unchanged and we repeat step 3
by considering another FD.

iii) Considering PQ Z, we check if the two rows of the table have the same value
under the columns PQ that make up the determinant of the FD. Since the rows R1
and R2 have values of P and Q under the columns PQ. Therefore, we need to

equate all the corresponding entries for the rows under column Z. The values in
column Z are already equal no changes are necessary Repeat step 3 again.

iv) Considering XY Q, we check if the two rows of the table have the value under
the columns XY that make up determinant of the FD. Since rows do not have
identical values, the table will remain unchanged. Now, there are no more FDs to
consider.

Database Management Systems 4 - 43 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 4 : Since there is no row in the table that has all Φ in it’s entries the decomposition is
lossy. That is original table cannot be recovered from the join of relations R1 and R2.

 Example 4.15.4 Suppose we decompose the scheme R=(A,B,C,D,E) into (A,B,C) and (A,D,E).

Show that this decomposition is the lossless decomposition if following functional

dependencies hold : A->BC,CD->E, B->D

Show that decomposition is dependency preserving decomposition.

Solution :

Step 1 : Construct table with five columns for given five attributes i.e. A, B, C, D, E and
two rows for given two relations i.e. R1 (A, B, C) and R2 (A, D, E).

 A B C D E

R1

R2

Step 2 : The attributes of the scheme of R1 are A, B, C. Therefore, we place A, B and C
under these columns respectively. The remaining entries of this row are filled with 1D
and 1E. Same as for R2 have attributes A, D, E. Therefore, we place A, D and E under
these columns respectively. The remaining entries of this row are filled with 2B and 2C.

 A B C D E

R1 A B C 1D 1E

R2 A 2B 2C D E

Step 3 :

i) Considering A BC we check if the two rows of the table have the same value
under the columns that make up the determinant of FD. Rows R1 and R2 has values
A under column A. Therefore, we need to equate all the corresponding entries for

these rows under columns B and C.
 Since entry under column B is B (for row R1) and column C is C (for row R2).

 A B C D E

R1 A B C 1D 1E

R2 A B C D E

ii) Considering CD E, we check for rows that have the same value in the columns C
and D. Here, rows do not same values, the table remain unchanged and we repeat
step 3 by another FD.

Database Management Systems 4 - 44 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

iii) Considering B D, we check for rows that have the same value in the columns B
here rows have same values B under the column B. Therefore, we need to equate

all the corresponding entries for these rows under column D. Since entry under
column D is D for row R1.

 A B C D E

R1 A B C D 1E

R2 A B C D E

Now there are no more FDs to consider.

Step 4 : Since row R2 has become A, B, C, D, E i.e. R2 has all values. Hence

decomposition is lossless.

 4.16 Second Normal Form (2NF) SPPU : Oct.-19, Marks 7

Before understanding the second normal form let us first discuss the concept of partial
functional dependency and prime and non prime attributes.

Concept of partial functional dependency

Partial dependency means that a nonprime attribute is functionally dependent on part
of a candidate key.

For example : Consider a relation R(A,B,C,D) with functional dependency

{AB->CD, A->C}

Here (AB) is a candidate key because

 (AB)+ = {ABCD} = {R}

Hence {A,B} are prime attributes and {C,D} are non prime attribute. In A->C, the non
prime attribute C is dependent upon A which is actually a part of candidate key AB.
Hence due to A->C we get partial functional dependency.
Prime and non prime attributes

 Prime attribute : An attribute, which is a part of the candidate-key, is known as a
prime attribute.

 Non-prime attribute : An attribute, which is not a part of the prime-key, is said to
be a non-prime attribute.

 Example : Consider a Relation R = {A,B,C,D} and candidate key as AB, the Prime
attributes : A, B.

Non Prime attributes : C, D

Database Management Systems 4 - 45 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The second normal form

For a table to be in the Second Normal Form, following conditions must be followed
i) It should be in the First Normal form.
ii) It should not have partial functional dependency.
For example : Consider following table in which every information about a the

Student is maintained in a table such as student id(sid), student name(sname), course
id(cid) and course name(cname).

Student_Course

sid sname cid cname

1 AAA 101 C

2 BBB 102 C++

3 CCC 101 C

4 DDD 103 Java

This table is not in 2NF. For converting above table to 2NF we must follow the
following steps -

Step 1 : The above table is in 1NF.

Step 2 : Here sname and sid are associated similarly cid and cname are associated with
each other. Now if we delete a record with sid = 2, then automatically the course C++ will
also get deleted. Thus,

sid->sname or cid->cname is a partial functional dependency, because {sid,cid} should
be essentially a candidate key for above table. Hence to bring the above table to 2NF we
must decompose it as follows :

Student

sid sname cid

1 AAA 101

2 BBB 102

3 CCC 101

4 DDD 103

Here candidate key is
(sid, cid)

and
(sid, cid)->sname

Database Management Systems 4 - 46 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Course

Thus now table is in 2NF as there is no partial functional dependency.

 Example 4.16.1 Study the relation given below and state what level of normalization can be

achieved and normalize it upto that level.

Order no. Order date Item lines

 Item code Quantity Price/Unit

1456 26-12-1999 3687 52 50.4

 4627 38 60

 3214 20 20.00

1886 04-03-1999 4629 45 20.25

 4627 30 60.20

1788 04-04-1999 4627 40 60.20

Solution :

Reason for the given relation being unnormalized

1. Observe order for many items.

2. Item lines has many attributes-called composite attributes.

3. Each tuple has variable length.

4. Difficult to store due to non-uniformity.

5. Given item code difficult to find qty-ordered and hence called Unnormalized
relation.

For conversion to first normal form -

 Identify the composite attributes, convert the composite attributes to individual
attributes.

 Duplicate the common attributes as many times as lines in composite attribute.

 Every attribute now describes single property and not multiple properties, some
data will be duplicated.

 Now this is called First normal form (1NF) also called flat file.

Database Management Systems 4 - 47 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Order no. Order date
Item lines

Item code Quantity Price/Unit

1456 26-12-1999 3687 52 50.4

1456 26-12-1999 4627 38 60

1456 26-12-1999 3214 20 20.00

1886 04-03-1999 4629 45 20.25

1886 04-03-1999 4627 30 60.20

1788 04-04-1999 4627 40 60.20

Fig. 4.16.1 Table in first normal form

 The above table has insertion, deletion and update anomalies. For instance - if we
delete order no. 1886, then the item code 4629 gets lost. Similarly if we update 4627,
then all instances of 4627 need to be changed.

 We need to convert 2NF if it is in 1NF. The non-key attributes are functionally
dependent on key attribute and if there is a composite key then no non-key
attribute is functionally depend on one part of the key.

 The table can be converted to 2NF as follows -

Orders

OrderNo OrderDate

1456 26-12-1999

1886 04-03-1999

1788 04-04-1999

Order details

OrderNo ItemCode Qty

1456 3687 52

1886 4629 45

1788 4627 40

Database Management Systems 4 - 48 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Prices

ItemCode Price/Unit

3687 50.4

4627 60

3214 20

4629 20.25

 Review Question

1. Explain why database normalization is required for good relational database design ? Explain
with example requirements of second normal form. SPPU : Oct.-19, In Sem, Marks 7

 4.17 Third Normal Form (3NF) SPPU : Oct.-18, 19, Aug.-17, Dec.-18, Marks 7

Before understanding the third normal form let us first discuss the concept of
transitive dependency, super key and candidate key.

Concept of transitive dependency

A functional dependency is said to be transitive if it is indirectly formed by two
functional dependencies. For example -

X -> Z is a transitive dependency if the following functional dependencies hold true :

X->Y

Y->Z

Concept of super key and candidate key

Superkey : A super key is a set or one of more columns (attributes) to uniquely
identify rows in a table.

Candidate key : The minimal set of attribute which can uniquely identify a tuple is
known as candidate key. For example consider following table

RegID RollNo Sname

101 1 AAA

102 2 BBB

103 3 CCC

104 4 DDD

Database Management Systems 4 - 49 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Superkeys

 {RegID}

 {RegID, RollNo}

 {RegID, Sname}

 {RollNo, Sname}

 {RegID, RollNo, Sname}

Candidate keys

 {RegID}

 {RollNo}

Third normal form

A table is said to be in the third normal form when,

i) It is in the second normal form.(i.e. it does not have partial functional dependency).

ii) It doesn't have transitive dependency.

Or in other words

In other words 3NF can be defined as : A table is in 3NF if it is in 2NF and for each
functional dependency

X-> Y

at least one of the following conditions hold :

i) X is a super key of table.

ii) Y is a prime attribute of table.

For example : Consider following table Student_details as follows -

sid sname zipcode cityname state

1 AAA 11111 Pune Maharashtra

2 BBB 22222 Surat Gujarat

3 CCC 33333 Chennai Tamilnadu

4 DDD 44444 Jaipur Rajastan

5 EEE 55555 Mumbai Maharashtra

Here

Super keys : {sid},{sid,sname},{sid,sname,zipcode}, {sid,zipcode,cityname}… and so
on.

Database Management Systems 4 - 50 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Candidate keys : {sid}

Non-prime attributes : {sname,zipcode,cityname,state}
The dependencies can be denoted as
 sid->sname
 sid->zipcode
 zipcode->cityname
 cityname->state
The above denotes the transitive dependency. Hence above table is not in 3NF. We can

convert it into 3NF as follows :

Student

sid sname zipcode

1 AAA 11111

2 BBB 22222

3 CCC 33333

4 DDD 44444

5 EEE 55555

Zip

zipcode cityname state

11111 Pune Maharashtra

22222 Surat Gujarat

33333 Chennai Tamilnadu

44444 Jaipur Rajasthan

55555 Mumbai Maharashtra

 Example 4.17.1 Consider the relation R = {A, B, C, D, E, F, G, H, I, J} and the set of

functional dependencies F = {{A, B} → C, A→ {D, E}, B→ F, F→{G, H}, D→{I, J} }

1. What is the key for R ? Demonstrate it using the inference rules.

2. Decompose R into 2NF, then 3NF relations.

Database Management Systems 4 - 51 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution : Let,
 A DE (given)
 A D, A E (decomposition rule)

As D I J, A I J

Using union rule we get

 A DEIJ

As A A

we get A ADEIJ

Using augmentation rule we compute AB

 AB ABDEIJ

But AB C (given)

 AB ABCDEIJ

 B F (given) F GH B GH (transitivity)

 AB AGH is also true

Similarly AB AF ∵ B F (given)

Thus now using union rule

 AB ABCDEFGHIJ

 AB is a key

The table can be converted to 2NF as
 R1 = (A, B, C)

 R2 = (A, D, E, I, J)

 R3 = (B, F, G, H)

The above 2NF relations can be converted to 3NF as follows
 R1 = (A, B, C)

 R2 = (A, D, E)

 R3 = (D, I, J)

 R4 = (B, E)

 R5 = (E, G, H).

 Example 4.17.2 A software contract and consultancy firm maintains details of all the various

projects in which its employees are currently involved. These details comprise :

 • Employee number

Database Management Systems 4 - 52 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 • Employee name

 • Date of birth

 • Department code

 • Department name

 • Project code

 • Project description

 • Project supervisor

Assume the following :

 • Each employee number is unique.

 • Each department has a single department code.

 • Each project has a single code and supervisor.

 • Each employee may work on one or more projects.

 • Employee names need not necessarily be unique.

 • Project code, project description and project supervisor are repeating fields.

Normalise this data to third normal form.

Solution :

Un-Normalized Form

Employee Number, Employee Name_Date of Birth_Department Code_Department Name_Project
Code_Project Description_Project Supervisor

1NF

Employee Number, Employee Name_Date of Birth
Department Code, Department Name

Employee Number, Project Code, Project Description_Project Supervisor

2NF

Employee Number, Employee Name_Date of Birth_Department Code_Department Name
Employee Number,Project Code,
Project Code, Project Description,Project Supervisor

3NF

Employee Number, Employee Name_Date of Birth_*Department Code

Department Code, Department Name
Employee Number, Project Code
Project Code, Project Description, Project Supervisor

Database Management Systems 4 - 53 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 4.17.3 What is normalization ?Normalize below given relation upto 3NF

STUDENT.

StudID StudName City Pincode ProjectID ProjectName Course Content

S101 Ajay Surat 326201 P101 Health Programming C++,

Java, C

S102 Vijay Pune 325456 P102 Social WEB HTML,

PHP,

ASP

Solution : For converting the given schema to first normal form, we will arrange it in such
a way that have each tuple contains single record. For that purpose we need to split the
schema into two tables namely Student and Projects.

1NF

Student

StudID StudName Pincode City

S101 Ajay 326201 Surat

S102 Vijay 325456 Pune

Projects

StudID ProjectID ProjName Course Content

S101 P101 Health Programming C++

S101 P101 Health Programming Java

S101 P101 Health Programming C

S102 P102 Social WEB HTML

S102 P102 Social WEB PHP

S102 P102 Social WEB ASP

Database Management Systems 4 - 54 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

2NF

For a table to be in 2NF, there should not be any partial dependency.

Student

StudID StudName Pincode City

S101 Ajay 326201 Surat

S102 Vijay 325456 Pune

Project

StudID ProjectID ProjName CourseID

S101 P101 Health C101

S101 P101 Health C102

S101 P101 Health C103

S102 P102 Social C104

S102 P102 Social C105

S102 P102 Social C106

CourseDetails

CourseID Course Content

C101 Programming C++

C102 Programming Java

C103 Programming C

C104 WEB HTML

C105 WEB PHP

C106 WEB ASP

Database Management Systems 4 - 55 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

3NF

There was a transitive dependency in 2NF tables because city is associated with
student ID and city depends upon zip code. Hence the transitive dependency is removed
to covert table into 3NF. The required 3NF schema is as below -

Student

StudID StudName Pincode

S101 Ajay 326201

S102 Vijay 325456

Student_Address

Pincode City

326201 Surat

325456 Pune
Project

StudID ProjectID ProjName CourseID

S101 P101 Health C101

S101 P101 Health C102

S101 P101 Health C103

S102 P102 Social C104

S102 P102 Social C105

S102 P102 Social C106

CourseDetails

CourseID Course Content

C101 Programming C++

C102 Programming Java

C103 Programming C

C104 WEB HTML

Database Management Systems 4 - 56 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

C105 WEB PHP

C106 WEB ASP

 Example 4.17.4 What is the need for normalization ? Consider the relation : Emp-proj = {ssn,

Pnumber, Hours, Ename, Pname, Plocation}

Assume {ssn,Pnumber} as primary key.

The dependencies are:

{ssn,Pnumber}->Hours

Ssn-> Ename

Pnumber ->{Pname,Plocation}

Normalize the above relation to 3NF.

Solution : Need for normalization - Refer section 4.9.

Consider the given dependencies

(1) {ssn,Pnumber}->Hours

(2) ssn-> Ename

(3) Pnumber ->{Pname,Plocation}

The dependencies 2 and 3 represents the partial dependency. Hence we convert the
relation into second normal form by splitting the given Emp-proj into three relations

Emp = {ssn, Ename}

Proj = {Pnumber, Pname, Plocation}

Works = {ssn, Pnumber, Hours}

 Example 4.17.5 Consider the following relation for CARSALE(CAR-NO,Date-Sold,Salesman-

no, Commission, Discount).

Assume a car can be sold by multiple salesman and hence primary is (CAR-NO,Salesman-

no)

Additional dependencies are

Date_Sold ->Discount

Salesman_no ->Commission

i) Is this relation in 1NF, 2NF, 3NF ? Why and Why not ?

ii) How would you normalize this completely ?
Solution :

i) Let us check the database schema against each normal form.

Database Management Systems 4 - 57 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

First normal form : As the relation have no multivalued attributes or nested relations,

the given relation is in 1st normal form.

Second normal form : This relation is not in second normal form because the attribute
commission is dependent on part of primary key Salesman-no.

Third normal form : This relation is not in third normal form because firstly it is not in

2nd normal form and there should be transitive dependency of a nonkey attribute on
primary key.

(CAR-No, Salesman-no) ->Date_sold->Discount

(ii) To normalize this relation we will decompose it into

R1={CAR-No, Salesman-no, Date_sold}

R2={Date_sold, Discount}

R3={Salesman-no, commission}

The functional dependency is as follows -

F1={(CAR-No, Salesman-no)→Date_sold}

F2={Date_sold→Discount}

F3={Salesman-no→commission}

 Example 4.17.6 Normalize the below relation upto 3NF

Module Dept Lecturer Text

M1 D1 L1 T1

M1 D1 L1 T2

M2 D1 L1 T1

M2 D1 L1 T3

M3 D1 L2 T4

M4 D2 L3 T1

M4 D2 3 T5

M5 D2 L4 T6

Solution : The given relation is already in 1st normal form. But it has Insert, delete and
update anomalies. Because -

1) Insert anomalies : We can not add a module(M) with no texts(T).

Database Management Systems 4 - 58 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

2) Delete anomalies : If we remove M3, we remove L2 as well.

3) Update anomalies : To change lecturer for M1, we have to change two rows.

Hence we will convert it to second normal form.

Step 1 : We can define the functional dependency FD as

{Module, Text}->{Lecturer, Dept}

But

{Module}->{Lecturer, Dept}
That means Lecturer and Dept are partially dependent on the primary key. Hence for

conversion of first normal form to second normal form we will decompose the give table
into two tables as
Table 2a

Module Dept Lecturer

M1 D1 L1

M2 D1 L1

M3 D1 L2

M4 D2 L3

M5 D2 L4

 Table 2b

Module Text

M1 T1

M1 T2

M2 T1

M2 T3

M3 T4

M4 T1

M4 T5

M5 T6

The relation is now in second normal form.

Step 3 : The table 2a has Insert, Delete and Update anomalies. Because -

1) INSERT anomalies : We can't add lecturers who teach no modules.

Database Management Systems 4 - 59 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

2) UPDATE anomalies : To change the department for L1 we must alter two rows.

3) DELETE anomalies : If we delete M3 we delete L2 as well.

Hence, to eliminate these anomalies, we decompose table 2a into two tables and
convert it to third normal form.

Step 4 : Hence we get
Table 3a

Lecturer Dept.

L1 D1

L2 D1

L3 D2

L4 D2
Table 3b

Module Lecturer

M1 L1

M2 L1

M3 L2

M4 L3

M5 L4

Step 5 : Thus now the complete relation is decomposed into three tables and it is in third
normal form. It is summarized as below
 Table 3a Table 3b Table 2b

Lecturer Dept. Module Lecturer Module Text

L1 D1 M1 L1 M1 T1

L2 D1 M2 L1 M1 T2

L3 D2 M3 L2 M2 T1

L4 D2 M4 L3 M2 T3

 M5 L4 M3 T4

 M4 T1

 M4 T5

 M5 T6

Database Management Systems 4 - 60 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 4.17.7 Students_Detail (Stud_id, Stud_name, Zip, City)

Consider above schema, check whether it is in 3NF, if not justify and propose the schema

in 3NF.
 SPPU : Oct.-18, In Sem, Marks 5

Solution : The given schema is not in 3NF because there exists following transitive
dependencies.

Because city is associated with Stud_id and city depends upon the zip code. When this
dependency is removed then the table will be in 3NF. It is as follows –

Student

Stud_id Stud_name Zip

Student_address

Zip City

 Example 4.17.8 Consider a table having structure student (Roll_no, Branch_code,

Marks_obtained, Exam_name, Total_marks).

Note following points :

i) Composite primary key for student table is (Roll_no, Branch_code).

ii) Branch_code column stores the code of branch for which students have taken admission.

iii) Exam name attribute is depend on both roll_no and branch_code.

iv) Total marks attribute is depend on exam_name attribute.

Considering above requirement state whether the table created is in third normal form or

not ? Why ? If not in third normal for propose the database design for above requirements

which is in third normal form.
 SPPU : Oct.-19, In Sem, Marks 7

Solution : Clearly the above table is not there in third normal form as there exists
transitive dependencies. This is because, exam_name attribute depend upon the primary
key roll_no and branch_code and total_marks are associated with exam_name attribute.

Database Management Systems 4 - 61 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

To convert the above schema to third normal form we need to decompose the schema
into different relations –

Student_info

Roll_no branch_code Exam_name

Exam_info

Exam_name Total_marks Marks_obtained

 Review Questions

1. Explain what is normalization ? Explain with example requirements of Third Normal Form.
 SPPU : Aug.-17, In Sem, Marks 5

2. Explain why Database normalization is required for good relational database design ? Explain
with example requirements of different normal forms like 1NF, 2NF and 3NF.

 SPPU : Dec.-18, End Sem, Marks 5

 4.18 BCNF SPPU ; May-18, Dec.-18,19, Marks 5

Boyce and Codd Normal Form is a higher version of the Third Normal form. This
form deals with certain type of anomaly that is not handled by 3NF.

A 3NF table which does not have multiple overlapping candidate keys is said to be in
BCNF.

Or in other words,

For a table to be in BCNF, following conditions must be satisfied :

i) R must be in 3rd Normal Form

ii) For each functional dependency (X → Y), X should be a super key. In simple words
if Y is a prime attribute then X can not be non prime attribute.

For example - Consider following table that represents that a student enrollment for
the course -

Database Management Systems 4 - 62 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Enrollment table

sid Course Teacher

1 C Ankita

1 Java Poonam

2 C Ankita

3 C++ Supriya

4 C Archana

From above table following observations can be made :

 One student can enroll for multiple courses. For example student with sid = 1 can
enroll for C as well as Java.

 For each course, a teacher is assigned to the student.

 There can be multiple teachers teaching one course for example course C can be
taught by both the teachers namely - Ankita and Archana.

 The candidate key for above table can be (sid, course), because using these two
columns we can find,

 The above table holds following dependencies

o (sid, course)->Teacher

o Teacher->course

 The above table is not in BCNF because of the dependency teacher->course. Note
that the teacher is not a superkey or in other words, teacher is a non prime attribute
and course is a prime attribute and non-prime attribute derives the prime attribute.

 To convert the above table to BCNF we must decompose above table into student
and course tables

Student

sid Teacher

1 Ankita

1 Poonam

2 Ankita

3 Supriya

4 Archana

Database Management Systems 4 - 63 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Course

Teacher Course

Ankita C

Poonam Java

Ankita C

Supriya C++

Archana C

Now the table is in BCNF

 Example 4.18.1 Consider a relation(A,B,C,D) having following FDs.{AB->C, AB->D,

C->A, B->D}. Find out the normal form of R.
Solution :

Step 1 : We will first find out the candidate key from the given FD.

 (AB)+ = {ABCD} = R

 (BC)+ = {ABCD} = R

 (AC)+ = {AC} ≠ R

There is no involvement of D on LHS of the FD rules. Hence D can not be part of any

candidate key. Thus we obtain two candidate keys (AB)+ and (BC)+. Hence

 prime attributes = {A,B,C}

 Non prime attributes = {D}

Step 2 : Now, we will start checking from reverse manner, that means from BCNF, then
3NF, then 2NF.

Step 3 : For R being in BCNF for X->Y the X should be candidate key or super key.

From above FDs consider C->D in which C is not a candidate key or super key. Hence
given relation is not in BCNF.

Step 4 : For R being in 3NF for X->Y either i) the X should be candidate key or super key
or

ii) Y should be prime attribute. (For prime and non prime attributes refer step 1)

o For AB->C or AB->D the AB is a candidate key. Condition for 3NF is satisfied.

Database Management Systems 4 - 64 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

o Consider C->A. In this FD the C is not candidate key but A is a prime attribute.
Condition for 3NF is satisfied.

o Now consider B->D. In this FD, the B is not candidate key, similarly D is not a
prime attribute. Hence condition for 3NF fails over here.

Hence given relation is not in 3NF.

Step 5 : For R being in 2NF following condition should not occur.

Let X->Y, if X is a proper subset of candidate key and Y is a non prime attribute. This
is a case of partial functional dependency.

For relation to be in 2NF there should not be any partial functional dependency.

o For AB->C or AB->D the AB is a complete candidate key. Condition for 2NF is
satisfied.

o Consider C->A. In this FD the C is not candidate key. Condition for 2NF is
satisfied.

o Now consider B->D. In this FD, the B is a part of candidate key(AB or BC),
similarly D is not a prime attribute. That means partial functional dependency
occurs here.

Hence condition for 2NF fails over here.

Hence given relation is not in 2NF.

Therefore we can conclude that the given relation R is in 1NF.

 Example 4.18.2 Consider a relation R(ABC) with following FD A->B, B->C and C->A. What

is the normal form of R ?

Solution :

Step 1 : We will find the candidate key

 (A)+ = {ABC} = R

 (B)+ = {ABC} = R

 (C)+ = {ABC} = R

Hence A, B and C all are candidate keys

 Prime attributes = {A,B,C}

Non prime attribute{}

Step 2 : For R being in BCNF for X->Y the X should be candidate key or super key.

Database Management Systems 4 - 65 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

From above FDs

o Consider A->B in which A is a candidate key or super key. Condition for BCNF is
satisfied.

o Consider B->C in which B is a candidate key or super key. Condition for BCNF is
satisfied.

o Consider C->A in which C is a candidate key or super key. Condition for BCNF is
satisfied.

This shows that the given relation R is in BCNF.

 Example 4.18.3 Consider table R(A,B,C,D,E) with FDs as A->B, BC->E, and ED->A.The

table is in which normal form ? Justify your answer.

Solution :

Step 1 : We will first find out the candidate keys for given relation R

 (ACD)+ = {A,B,C,D,E}

 (BCD)+ = {A,B,C,D,E}

 (CDE)+ = {A,B,C,D,E}

Step 2 : Let A->B, the ACD is candidate key and A is a partial key, B is a prime
attribute(i.e. it is also part of candidate key). Hence A->B is not a partial functional
dependency.

Similarly in BC->E and ED->A,

E and A are prime-attributes and hence both are not partial functional dependencies.

Hence R is in 2NF.

Step 3 : According to 3NF, every non-prime attribute must be dependent on the
candidate key.

In the given functional dependencies, all dependent attributes are prime-attributes.
Hence the relation R is in 3NF.

Step 4 : For R being in BCNF for X->Y the X should be candidate key or super key.

The table is not in BCNF, none of A, BC and ED contain a key.

Database Management Systems 4 - 66 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 4.18.4 A college maintains details of its lecturers' subject area skills. These details

comprise :

• Lecturer number

• Lecturer name

• Lecturer grade

• Department code

• Department name

• Subject code

• Subject name

• Subject level

Assume that each lecturer may teach many subjects but may not belong to more than one

department.

Subject code, subject name and subject level are repeating fields.

Normalise this data to third normal form.
Solution :

Unnormalized form

Lecturer Number, Lecturer Name_Lecturer Grade_Department Code,Department Name_Subject
Code, Subject Name_Subject Level

1NF

LecturerNumber Lecturer Name Lecturer Grade Department

Code

Department

Name

Lecturer Number Subject Code Subject Name Subject Level

2NF

Lecturer Number _Lecturer Name _Lecturer Grade _Department Code _Department Name

Lecturer Number Subject Code

Subject Code _Subject Name _Subject Level

Database Management Systems 4 - 67 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

3NF

Lecturer Number Lecturer Name Lecturer Grade

Department Code _Department Name

Lecturer Number Subject Code

Subject Code Subject Name Subject Level

 Example 4.18.5 Prove that any relational schema with two attributes is in BCNF.

Solution : Here, we will consider R={A,B} i.e. a relational schema with two attributes. Now
various possible FDs are A->B, B->A.

From the above FDs

o Consider A->B in which A is a candidate key or super key. Condition for BCNF is
satisfied.

o Consider B->A in which B is a candidate key or super key. Condition for BCNF is
satisfied.

o Consider both A->B and B->A with both A and B is candidate key or super key.
Condition for BCNF is satisfied.

o No FD holds in relation R. In this {A,B} is candidate key or super key. Still
condition for BCNF is satisfied.

This shows that any relation R is in BCNF with two attributes.

 Example 4.18.6 Prove the statement “Every relation which is in BCNF is in 3NF but the

converse is not true.”

Solution : For a relations to be in 3NF

A table is said to be in the Third Normal Form when,

i) It is in the Second Normal form. (i.e. it does not have partial functional dependency)

ii) It doesn't have transitive dependency.

Or in other words

Database Management Systems 4 - 68 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

In other words 3NF can be defined as : A table is in 3NF if it is in 2NF and for each
functional dependency X-> Y

at least one of the following conditions hold :
iii) X is a super key of table
iv) Y is a prime attribute of table
For a relation to be in BCNF
1) It should be in 3NF
2) A 3NF table which does not have multiple overlapping candidate keys is said to be

in BCNF.

For proving that the table can be in 3NF but not in BCNF consider Following relation

R(Student, Subject, Teacher) . Consider following are FDs

(Subject, Student)-> Teacher

Because subject and student combination gives unique teacher.

Teacher -> Subject

Because each teacher teaches only Subject.

(Teacher, Student)->Subject
 So, this relation is in 3NF as every non-key attribute is non-transitively fully

functional dependent on the primary key.
 But it is not in BCNF. Because this is a case of overlapping of candidate keys

because there are two composite candidate keys :

o (Subject, Student)

o (Teacher, Student)

 And student is a common attribute in both the candidate keys.

So we need to normalize the above table to BCNF. For that purpose we must set
Teacher to be a candidate key

The decomposition of above takes place as follows

R1(Student, Teacher)

R2(Teacher, Subject)

Now table is in 3NF, as well as in BCNF.

This show that the relation Every relation which is in BCNF is in 3NF but the converse
is not true.

Database Management Systems 4 - 69 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 4.18.7 Consider relational schema R(A,B,C) with FD’s AB->C and C->A. Show that

schema R is in 3NF but not in BCNF. Determine minimal keys of R.

Solution : A table is said to be in 3rd normal from when,

i) It is in 2nd normal form.

ii) It doesn’t have transitive dependency or in other words L.H.S must be a candidate
key or R.H.S is prime attribute.

For 1
st

 Condition :

Step 1 : For 2nd Normal form condition :

Step A : It is in 1st normal form

Step B : Table not contain partial dependency i.e. all the non-prime attributes should be
fully functionally dependent on candidate key.

Given relation R (A, B, C)

 FD : AB C, C A

We will first find out the candidate key from the given FD.

 (AB)+ = {ABC} = R,

 (CB)+ = {ABC} = R,

 (C)+ = {CA} R

They we obtain (AB)+ and (CB)+ candidate key.

Hence, prime attributes = {ABC}

 None prime attributes = {C}

Hence, For AB C

AB is candidate key and its present at R.H.S for C A.

C is also candidate key and its present at R.H.S. There is no partial dependency. Hence
it is in 2nd normal form.

Step 2 : Candidate key = (AB)+ and (CB)+

Prime attributes (ABC)

Non prime attribute () Null

For given DF’s AB C, C A

Database Management Systems 4 - 70 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

In AB C, L.H.S is AB i.e. it is candidate key and In C A, L.H.S is C i.e. it is not
candidate key but A is present at R.H.S i.e. it is prime attributes.

Hence, given relation is present in 3NF.

Now find given relation is present in BCNF or not.

Step 3 : Boyce / Codd normal form (BCNF) :

For a table to be in BCNF, following conditions must be satisfied.

i) R must be in 3rd normal form

ii) For each functional dependency (X Y), X should be a super key or candidate key.

In above 1st condition becomes true it is in 3rd normal form. Now check for 2nd
condition. From given FDs

AB C and C A in which AB is candidate key but C is not candidate key. Hence
2nd condition becomes false so given relation is not present in BCNF.

 Example 4.18.8 What is the difference between 3NF and BCNF ?

Solution :

Sr. No. 3NF BCNF

1. 3NF stands for Third Normal Form. BCNF stands for Boyce Codd Normal
Form.

2. The table is in 3NF if it is in 2NF and for
each functional dependency X->Y at least
following condition hold:

(i) X is a superkey,

(ii) Y is prime attribute of table.

The table is in BCNF if it is in 3rd normal
form and for each relation X->Y X
should be super key.

3. 3NF can be obtained without sacrificing all
dependencies.

Dependencies may not be preserved in
BCNF.

4. Lossless decomposition can be achieved in
3NF.

Lossless decomposition is hard to obtain
in BCNF.

5. 3NF can be achieved without loosing any
information from the old table.

For obtaining BCNF we may loose some
information from old table.

Database Management Systems 4 - 71 Relational Database Design

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Example 4.18.9 Consider following relation -

Book(book_title, authorname, book_type, listprice, author_affiliation, publisher)

Suppose the following functional dependencies exist –

book_title->publisher,book_type

book_type->listprice

authorname->author_affiliation

i) What normal form is the relation in ? Explain your answer.

ii) Apply normalization until you can not decompose the relations further. State the reasons

behind each decomposition.
Solution :

(i) The key for this relation is (Book_title, Authorname). This relation is in 1NF and not
in 2NF as no attributes are Fully Functionally Dependent on the key.

Step 1 : We will first decompose it in 2nd Normal Form by following decomposition.
R1(book_title, authorname)

R2(book_title, publisher,book_type,listprice)
R3(authorname,authoraffiliation)

Reason : This decomposition eliminates partial functional dependencies.

Step 2 : Now we will decompose it further to bring the table in 3rd Normal form
R1(book_title, authorname)
R2(book_title, publisher,book_type,listprice)
R21(book_title, publisher,book_type)

R22(book_type, listprice)
R3(authorname,authoraffiliation)

Reason : This decomposition eliminates transitive functional dependency of listprice.

 Review Question

1. Explain 3NF and BCNF. Also enlist their differences.
 SPPU : May-18, Dec.-18,19, End Sem, Marks 5

Unit - III
Multiple Choice Questions

Q.1 Foreign key is one in which the ____ of one relation is referenced in another relation.

 a candidate key b constraint

 c primary key d foreign key

Q.2 The relationship between the two tables are created using _____.

 a primary key b check constraints

 c candidate key d foreign key

Q.3 Constraints are preferred methods for enforcing ______.

 a data abstraction b data access

 c data inheritance d data integrity

Q.4 A table that displays data redundancies yields ____ anomalies.

 a insertion b deletion

 c update d all of these

Q.5 The different classes of relations created by the technique for preventing modification

anomalies are called ________.

 a normal forms b referential integrity constraints

 c functional dependencies d none of the above

Q.6 For some relations, changing the data can have undesirable consequences called ______.

 a referential integrity constraints b modification anomalies

 c normal forms d transitive dependencies

Q.7 The three rules that are used to find the logically implied functional dependencies are

called as ______.

 a closure rules b Codd’s rules

 c Armstrong’s rule d none of these

(4 - 72)

Database Management Systems 4 - 73 Unit - III

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.8 FD stands for _____.

 a Functional Dependency b Facilitate Dependency

 c Functional Data d Facilitate Data

Q.9 Which key is referencing a primary key in a table ?

 a Primary key b Candidate key

 c Foreign key d All of these

Q.10 If K R then K is said to be the _______ of R.

 a candidate key b foreign key

 c super key d none of these

Q.11 If there is more than one key for relation schema in DBMS then each key in relation

schema is classified as ______.

 a prime key b super key

 c candidate key d primary key

Q.12 The form of dependency in which the set of attributes that are neither a subset of any of

the keys nor the candidate key is classified as ______.

 a transitive dependency b full functional dependency

 c partial dependency d prime functional dependency

Q.13 The property of normalization of relations which guarantees that functional dependencies

are represented in separate relations after decomposition is classified as ______.

 a nonadditive join property

 b independency reservation property

 c dependency preservation property

 d additive join property

Q.14 X Y is trivial if ______.

 a X ⊂ Y b Y ⊂ X

 c X ⊇ Y d none of these

Q.15 A table has fields F1, F2 , F3 , F4, F5 with the following functional dependencies

F1 F3,

F2 F4

(FI,F2) F5

In terms of normalization, this table is in ______.

 a 1NF b 2NF

 c 3NF d none of these

Database Management Systems 4 - 74 Unit - III

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.16 Which normal form is considered adequate for relational database design ?

 a 2NF b 3NF

 c 4NF d BCNF

Q.17 Lossless, dependency preserving decomposition into ___ normal form is always possible.

 a 2NF b 3NF

 c 4NF d BCNF

Q.18 After normalization, the original table can be obtained by ______.

 a delete operation b join operation

 c retrieve operation d cascade operation

Q.19 FDs are the types of constraints that are based on ______.

 a data b tables

 c keys d none of these

Q.20 A property which ensures that each functional dependency is represented in some

individual relational resulting after decomposition is called ______.

 a loss less join b dependency preservation

 c both a and b d none of the above

Q.21 F+ is called as ____ of F.

 a recursion b closure

 c next version d none of these

Q.22 A functional dependency must first satisfy the second normal form to satisfy the third

normal form.

 a True b False

Answers Keys for Multiple Choice Questions :

Q.1 c Q.2 d Q.3 d Q.4 d

Q.5 a Q.6 b Q.7 c Q.8 a

Q.9 a Q.10 c Q.11 c Q.12 a

Q.13 c Q.14 a Q.15 a Q.16 b

Q.17 b Q.18 b Q.19 c Q.20 c

Q.21 b Q.22 a

(5 - 1)

UNIT - IV

5 Database Transaction
Management

Syllabus
Introduction to Database Transaction, Transaction states, ACID properties, Concept of Schedule,
Serial Schedule. Serializability : Conflict and View, Cascaded Aborts, Recoverable and Non-
recoverable Schedules. Concurrency Control : Lock-based, Time-stamp based Deadlock handling.
Recovery methods : Shadow-Paging and Log-Based Recovery, Checkpoints. Log-Based Recovery :
Deferred Database Modifications and Immediate Database Modifications.

Contents

Part I : Transaction Management

5.1 Introduction to Database Transaction

5.2 Transaction states ... Dec 17, Marks 8

5.3 ACID Properties ... Dec.-18,19, May-18,19, Marks 8

5.4 Concept of Schedule

5.5 Serializability : Conflict and View Dec.-17,18,19, May-18, Marks 9

5.6 Recoverable and Non-Recoverable Schedules

Part II : Concurrency Control

5.7 Concurrency Control

5.8 Need for Concurrency

5.9 Lock based Protocol ... Dec.-17,18,19, May-18,19, .. Marks 9

5.10 Time-stamp based Protocol May-19, Dec.-17, Marks 9

5.11 Deadlocks Handling

5.12 Recovery Concepts

5.13 Recovery Methods

5.14 Shadow-paging

5.15 Check Points

5.16 Log-based Recovery : Deferred and Immediate Update

 ... May-18,19, Marks 8

Multiple Choice Questions

Database Management Systems 5 - 2 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Part I : Transaction Management

 5.1 Introduction to Database Transaction

 Definition of Transaction : A transaction can be defined as a group of tasks that
form a single logical unit. For example - Suppose we want to withdraw ` 100 from
an account then we will follow following operations :
1) Check account balance
2) If sufficient balance is present request for withdrawal.
3) Get the money
4) Calculate Balance = Balance – 100
5) Update account with new balance.

The above mentioned five steps denote one transaction.
 A database is a collection of named data items.
 Granularity or size of data items : The size of data items can be a field, a record or a

whole disk block.

 Basic operations on data item A are -

1. read_item(X) 2. write_item(X)

1. read_item(X) : This is a reading operation in which database item named X is read
into a programming variable. We can name the program variable as X for
simplification.

2. write_item(X) : This operation writes the value of program variable X into the
database item which is also named as X.

 Basic unit of data transfer from the disk to the computer main memory is one block.
 read_item(X) command includes the following steps :
 Step 1 : Find the address of the disk block that contains item X.
 Step 2 : Copy that disk block into a buffer in main memory (if that disk block is not

already in some main memory buffer).
 Step 3 : Copy item X from the buffer to the program variable named X.

 write_item(X) command includes the following steps :

 Step 1 : Find the address of the disk block that contains item X.

 Step 2 : Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer).

 Step 3 : Copy item X from the program variable named X into its correct location in
the buffer.

 Step 4 : Store the updated block from the buffer back to disk.

Database Management Systems 5 - 3 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 Example of sample transaction performing read and write operations
 read_item(X);
 X=X+M;
 Write_item(X);

 Transaction Notations :

The transaction notations focuses on read and write operations. For example –
Following are two transactions denoted by T1 and T2
 T1:b1;r1(X);w1(X);r1(Y);W1(Y);e1;

 T2:b2;r2(X);r2(Y);e2

The r and w represents the read and write operations. The b1 and b2 represents the
beginning and e1 and e2 represents ending of transaction.

 5.2 Transaction States SPPU : Dec..-17, Marks 8

Each transaction has following five states :

Fig. 5.2.1 Transaction states

1) Active : This is the first state of transaction. For example : Insertion, deletion or
updation of record is done here. But data is not saved to database.

2) Partially committed : When a transaction executes its final operation, it is said to be
in a partially committed state.

3) Failed : A transaction is said to be in a failed state if any of the checks made by the
database recovery system fails. A failed transaction can no longer proceed further.

4) Aborted : If a transaction is failed to execute, then the database recovery system will
make sure that the database is in its previous consistent state. If not, it brings the
database to consistent state by aborting or rolling back the transaction.

5) Committed : If a transaction executes all its operations successfully, it is said to be
committed. This is the last step of a transaction, if it executes without fail.

Database Management Systems 5 - 4 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 Example 5.2.1 Define a transaction. Then discuss the following with relevant examples :

1. A read only transaction 2. A read write transaction 3. An aborted transaction

Solution :

1) Read only transaction

T1

Read(A)

Read(B)

Display(A – B)

2) A read write transaction

T1

Read(A)

A=A+100

Write(A)

3)

T1 T2 Description

Read(A) Assume A=100

A=A+50 A=150

Write(A)

 Read(A) A=150

 A=A+100 A=250

RollBack A=100 (restore back to original value which is
before Transaction T1)

 Write(A)

 Review Question

1. Transaction during its execution should be in one of the different states at any point of time,
explain the different states of transactions during its execution.

 SPPU : Dec 17, End Sem, Marks 8

Database Management Systems 5 - 5 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 5.3 ACID Properties SPPU : Dec.-18,19, May-18,19, Marks 8

1) Atomicity :

 This property states that each transaction must be considered as a single unit and
must be completed fully or not completed at all.

 No transaction in the database is left half completed.

 Database should be in a state either before the transaction execution or after the
transaction execution. It should not be in a state ‘executing’.

 For example - In above mentioned withdrawal of money transaction all the five
steps must be completed fully or none of the step is completed. Suppose if
transaction gets failed after step 3, then the customer will get the money but the
balance will not be updated accordingly. The state of database should be either at
before ATM withdrawal (i.e customer without withdrawn money) or after ATM
withdrawal (i.e. customer with money and account updated). This will make the
system in consistent state.

2) Consistency :

 The database must remain in consistent state after performing any transaction.

 For example : In ATM withdrawal operation, the balance must be updated
appropriately after performing transaction. Thus the database can be in consistent
state.

3) Isolation :

 In a database system where more than one transaction are being executed
simultaneously and in parallel, the property of isolation states that all the
transactions will be carried out and executed as if it is the only transaction in the
system.

 No transaction will affect the existence of any other transaction.

 For example : If a bank manager is checking the account balance of particular
customer, then manager should see the balance either before withdrawing the
money or after withdrawing the money. This will make sure that each individual
transaction is completed and any other dependent transaction will get the consistent
data out of it. Any failure to any transaction will not affect other transaction in this
case. Hence it makes all the transactions consistent.

Database Management Systems 5 - 6 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

4) Durability :

 The database should be strong enough to handle any system failure.

 If there is any set of insert /update, then it should be able to handle and commit to
the database.

 If there is any failure, the database should be able to recover it to the consistent
state.

 For example : In ATM withdrawal example, if the system failure happens after
customer getting the money then the system should be strong enough to update
Database with his new balance, after system recovers. For that purpose the system
has to keep the log of each transaction and its failure. So when the system
recovers, it should be able to know when a system has failed and if there is any
pending transaction, then it should be updated to Database.

Review Question

1. State and explain in brief the ACID properties. During execution of transaction, a transaction
passes through several states, until it finally commits or aborts. List all possible sequences of
states through which a transaction may pass. Explain why each state transition occurs.

 SPPU : May-18,19, Dec.-18,19, End Sem, Marks 8

 5.4 Concept of Schedule

Schedule is an order of multiple transactions executing in concurrent environment.
Following Fig. 5.4.1 represents the types of schedules.

Fig. 5.4.1 : Types of schedule

Serial schedule : The schedule in which the transactions execute one after the other is
called serial schedule. It is consistent in nature. For example : Consider following two
transactions T1 and T2.

Database Management Systems 5 - 7 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

T1 T2

R(A)

W(A)

R(B)

W(B)

 R(A)

 W(A)

 R(B)

 W(B)

All the operations of transaction T1 on data items A and then B executes and then in
transaction T2 all the operations on data items A and B execute. The R stands for read
operation and W stands for write operation.

Non serial schedule : The schedule in which operations present within the transaction
are intermixed. This may lead to conflicts in the result or inconsistency in the resultant
data.

For example -

Consider following two transactions,
T1 T2

R(A)

W(A)

 R(A)

 W(B)

R(A)

W(B)

 R(B)

 W(B)

The above transaction is said to be non serial which result in inconsistency or conflicts
in the data.

 5.5 Serializability : Conflict and View SPPU : Dec.-17,18,19, May-18, Marks 9

 When multiple transactions run concurrently, then it may lead to inconsistency of
data (i.e. change in the resultant value of data from different transactions).

Database Management Systems 5 - 8 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 Serializability is a concept that helps to identify which non serial schedule and find
the transaction equivalent to serial schedule.

T1 A B T2

Initial Value 100 100

A=A – 10

W(A)

B=B+10

W(B)

 90 110

 A=A–10

 W(A)

 80 110

 In above transactions initially T1 will read the values from database as A = 100,
B = 100 and modify the values of A and B. But transaction T2 will read the modified
value i.e. 90 and will modify it to 80 and perform write operation. Thus at the end of
transaction T1 value of A will be 90 but at end of transaction T2 value of A will be
80. Thus conflicts or inconsistency occurs here. This sequence can be converted to a
sequence which may give us consistent result. This process is called serializability.

Difference between serial schedule and serializable schedule

Sr.
No.

Serial schedule Serializable schedule

1 No concurrency is allowed in serial schedule. Concurrency is allowed in serializable
schedule.

2 In serial schedule, if there are two transactions
executing at the same time and no interleaving
of operations is permitted, then following can
be the possibilities of execution -
i) Execute all the operations of transactions T1

in a sequence and then execute all the
operations of transactions T2 in a sequence.

ii) Execute all the operations of transactions T2
in a sequence and then execute all the
operations of transactions T1 in a sequence.

In serializable schedule, if there are two
transactions executing at the same time and
interleaving of operations is allowed there
can be different possible orders of executing
an individual operation of the transactions.

Database Management Systems 5 - 9 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 Example of serial schedule
T1 T2

Read(A)

A=A–50

Write(A)

Read(B)

B=B+100

Write(B)

 Read(A)

 A=A+10

 Write(A)

Example of serializable schedule
T1 T2

Read(A)

A=A–50

Write(A)

 Read(B)

 B=B+100

 Write(B)

Read(B)

Write(B)

 There are two types of serializabilities : Conflict serializability and view
serializability.

 5.5.1 Conflict Serializability

Definition : Suppose T1 and T2 are two transactions and I1 and I2 are the instructions in
T1 and T2 respectively. Then these two transactions are said to be conflict serializable, if

both the instruction access the data item d, and at least one of the instruction is write
operation.

What is conflict ? : In the definition three conditions are specified for a conflict in
conflict serializability -

1) There should be different transactions

2) The operations must be performed on same data items

3) One of the operation must be the Write (W) operation.

 We can test a given schedule for conflict serializability by constructing a precedence
graph for the schedule, and by searching for absence of cycles in the graph.

 Predence graph is a directed graph, consisting of G = (V,E) where V is set of vertices
and E is set of edges. The set of vertices consists of all the transactions participating
in the schedule. The set of edges consists of all edges Ti Tj for which one of three

conditions holds :
1. Ti executes write(Q) before Tj executes read(Q).

Database Management Systems 5 - 10 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

2. Ti executes read(Q) before Tj executes write(Q).
3. Ti executes write(Q) before Tj executes write(Q).

 A serializability order of the transactions can be obtained by finding a linear order
consistent with the partial order of the precedence graph. This process is called
topological sorting.

Testing for serializability

 Following method is used for testing the serializability : To test the conflict
serializability we can draw a graph G = (V, E) where V = Vertices which represent
the number of transactions.

E = Edges for conflicting pairs.

Step 1 : Create a node for each transaction.

Step 2 : Find the conflicting pairs (RW, WR, WW) on the same variable (or data item) by
different transactions.

Step 3 : Draw edge for the given schedule. Consider following cases
1. Ti executes write(Q) before Tj executes read(Q), then draw edge from Ti to Tj.

2. Ti executes read(Q) before Tj executes write(Q) , then draw edge from Ti to Tj.

3. Ti executes write(Q) before Tj executes write(Q), , then draw edge from Ti to Tj.

Step 4 : Now, if precedence graph is cyclic then it is a non conflict serializable schedule
and if the precedence graph is acyclic then it is conflict serializable schedule.

 Example 5.5.1 Consider the following two transactions and schedule (time goes from top to

bottom). Is this schedule conflict-serializable ? Explain why or why not.

T1 T2

R(A)

W(A)

 R(A)

 R(B)

R(B)

W(B)

Database Management Systems 5 - 11 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Solution :

Step 1 : To check whether the schedule is conflict serializable or not we will check from
top to bottom. Thus we will start reading from top to bottom as,

T1 : R(A) -> T1 : W(A) ->T2 : R(A) -> T2 : R(B) ->T1 : R(B) -> T1 : W(B)

Step 2 : We will find conflicting operations. Two operations are called as conflicting
operations if all the following conditions hold true for them -

i) Both the operations belong to different transactions.

ii) Both the operations are on same data item.

iii) At least one of the two operations is a write operation.

From above given example in the top to bottom scanning we find the conflict as
T1 : W(A) ->T2 : R(A).

i) Here note that there are two different transactions T1 and T2,

ii) Both work on same data item i.e. A and

iii) One of the operation is write operation.

Step 3 : We will build a precedence graph by drawing one node from each transaction. In
above given scenario as there are two transactions, there will be two nodes namely T1 and
T2.

Fig. 5.5.1

Step 4 : Draw the edge between conflicting transactions. For example in above given
scenario, the conflict occurs while moving from T1 : W(A) to T2 : R(A). Hence edge must
be from T1 and T2.

 Fig. 5.5.2

Step 5 : Repeat the step 4 while reading from top to bottom. Finally the precedence graph
will be as follows

 Fig. 5.5.3 : Precedence graph

Database Management Systems 5 - 12 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Step 6 : Check if any cycle exists in the graph. Cycle is a path using which we can start

from one node and reach to the same node. If the is cycle found then schedule is not

conflict serializable. In the step 5 we get a graph with cycle, that means given schedule is

not conflict serializable.

 Example 5.5.2 Check whether following schedule is conflict serializable or not. If it is not

conflict serializable then find the serializability order.

T1 T2 T3

R(A)

 R(B)

 R(B)

 W(B)

W(A)

 W(A)

 R(A)

 W(A)

Solution :

Step 1 : We will read from top to bottom, and build a precedence graph for conflicting
entries. We will build a precedence graph by drawing one node from each transaction. In
above given scenario as there are three transactions, there will be two nodes namely T1
T2, and T3

Fig. 5.5.4

Database Management Systems 5 - 13 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 Step 2 : The conflicts are found as follows –

 Step 3 : The precedence graph will be as follows –

Step 4 : As there is no cycle in the precedence graph, the given sequence is conflict
serializable. Hence we can convert this non serial schedule to serial schedule. For that
purpose we will follow these steps to find the serializable order.

Step 5 : A serializability order of the transactions can be obtained by finding a linear
order consistent with the partial order of the precedence graph. This process is called
topological sorting.

Step 6 : Find the vertex which has no incoming edge which is T1. If we delete T1 node
then T3 is a node that has no incoming edge. If we delete T3, then T2 is a node that has no
incoming edge.

 Thus the nodes can be deleted in a order T1, T3 and T2. Hence the order will be T1-
T3-T2

Database Management Systems 5 - 14 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 Example 5.5.3 Check whether the below schedule is conflict serializable or not.

{B2,r2(X),b1,r1(X),W1(X),r1(Y),W1(Y),W2(X),e1,C1,e2,C2}

Solution : b2 and b1 represents begin transaction 2 and begin transaction 1. Similarly, e1
and e2 represents end transaction 1 and end transaction 2.

We will rewrite the schedule as follows -

T1 T2

 r2(X)

r1(X)

W1(X)

r1(Y)

W1(Y)

 W2(X)

Step 1 : We will find conflicting operations. Two operations are called as conflicting
operations if all the following conditions hold true for them -

i) Both the operations belong to different transactions.

ii) Both the operations are on same data item.

iii) At least one of the two operations is a write operation

The conflicting entries are as follows -

Database Management Systems 5 - 15 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Step 2 : Now we build a precedence graph for conflicting entries.

Fig. 5.5.5

As there are two transactions only two nodes are present in the graph.
Step 3 : We get a graph with cycle, that means given schedule is not conflict serializable.

 Example 5.5.4 Consider the three transactions T1, T2, and T3 and schedules S1 and S2 given

below. Determine whether each schedule is serializable or not ? If a schedule is serializable

write down the equivalent serial schedule(S).

T1: R1(x) R1(z);W1(x);

T2: R2(x);R2(y);W2(z);W2(y)

T3:R3(x);R3(y);W3(y);

S1: R1(x);R2(z);R1(z);R3(x);R3(y);W1(x);W3(y);R2(y);W2(z);W2(y);

S2: R1(x);R2(z);R3(x);R1(z);R2(y);R3(y);W1(x);W2(z);W3(y);W2(y);
Solution :
Step 1 : We will represent the schedule S1 as follows

T1 T2 T3

R1(x)

 R2(z)

R1(z)

 R3(x)

 R3(y)

W1(x)

 W3(y)

 R2(y)

 W2(z)

 W2(y)

Database Management Systems 5 - 16 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Step (a) : We will find conflicting operations. Two operations are called as conflicting
operations if all the following conditions hold true for them -

i) Both the operations belong to different transactions.

ii) Both the operations are on same data item.

iii) At least one of the two operations is a write operation

Step (b) : Now we will draw precedence graph as follows -

Fig. 5.5.6 Precedence graph

As there is no cycle in the precedence graph, the given sequence is conflict
serializable. Hence we can convert this non serial schedule to serial schedule. For that
purpose we will follow these steps to find the serializable order.

Step (c) : A serializability order of the transactions can be obtained by finding a linear
order consistent with the partial order of the precedence graph. This process is called
topological sorting.

Step (d) : Find the vertex which has no incoming edge which is T3. If we delete T3, then
T1 is the edge that has no incoming edge. Finally find the vertex having no outgoing edge
which is T2. Hence the order will be T3- T1-T2

Database Management Systems 5 - 17 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Step 2 : We will represent the schedule S2 as follows -
T1 T2 T3

R1(x)

 R2(z)

 R3(x)

R1(z)

 R2(y)

 R3(y)

W1(x)

 W2(z)

 W3(y)

 W2(y)

We will find conflicting operations. Two operations are called as conflicting
operations if all the following conditions hold true for them -

i) Both the operations belong to different transactions.

ii) Both the operations are on same data item.

iii) At least one of the two operations is a write operation

The conflicting entries are as follows -

Database Management Systems 5 - 18 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Step (b) : Now we will draw precedence graph as follows -

 Fig. 5.5.7 Precedence Graph

As there is no cycle in the precedence graph, the given sequence is conflict
serializable. Hence we can convert this non serial schedule to serial schedule. For that
purpose we will follow these steps to find the serializable order.

Step (c) : A serializability order of the transactions can be obtained by finding a linear
order consistent with the partial order of the precedence graph. This process is called
topological sorting.

Step (d) : Find the vertex which has no incoming edge which is T3. Finally find the vertex
having no outgoing edge which is T2. So in between them is T1. Hence the order will be
T3- T1-T2

 Example 5.5.5 Consider the transaction, transaction and transaction are any hypothetical

transactions working on data item Q. Schedule explaining the execution of and are given

below. Decide whether following schedule is conflict serializable or not ? Justify your

answer.
T3 T4 T6

read (Q)

 write (Q)

write (Q)

 write (Q)

 SPPU : Dec 17, End Sem, Marks 9

Solution : We will find the conflicting entries as follows -

Database Management Systems 5 - 19 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

The precedence graph is as follows –

Fig. 5.5.8 Precedence Graph

As there exists cycle, the given schedule is not conflict serializable.

 Example 5.5.6 Explain the concept of conflict serializability. Decide whether following

schedule is conflict serializable or not. Justify your answer.

T1 T2

read (A)

write (A)

 read (A)

 write (A)

read (B)

write (B)

 read (B)

 write (B)

 SPPU : May 18, End Sem, Marks 9

Solution :

Step 1 : We will read from top to bottom, and build a precedence graph for conflicting
entries.

The conflicting entries are as follows –

Database Management Systems 5 - 20 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Step 2 : Now we will build precedence graph as follows –

Step 3 : There is no cycle in the precedence graph. That means this schedule is conflict
serializable. Hence we can convert this non serial schedule to serial schedule. For that
purpose we will follow the following steps to find the serializable order.

1) Find the vertex which has no incoming edge which is T1.
2) Then find the vertex having no outgoing edge which is T2. In between them there is

no other transaction.
3) Hence the order will be T1-T2

 5.5.2 View Serializability

 If a given schedule is found to be view equivalent to some serial schedule, then it is
called as a view serializable schedule.

 View Equivalent Schedule : Consider two schedules S1 and S2 consisting of
transactions T1 and T2 respectively, then schedules S1 and S2 are said to be view
equivalent schedule if it satisfies following three conditions :

o If transaction T1 reads a data item A from the database initially in schedule S2,
then in schedule S2 also, T1 must perform the initial read of the data item X from
the database. This is same for all the data items. In other words - the initial reads
must be same for all data items.

o If data item A has been updated at last by transaction Ti in schedule S1, then in
schedule S2 also, the data item A must be updated at last by transaction Ti.

o If transaction Ti reads a data item that has been updated by the transaction Tj in
schedule S1, then in schedule S2 also, transaction Ti must read the same data item
that has been updated by transaction Tj. In other words the Write-Read sequence
must be same.

o Difference between conflict serializability and view serializability

Conflict serializability View serializability

Every conflict serializable is view serializable. Every view serializable schedule is not

necessarily conflict serializable.

It is easy to test conflict serializability. It is complex to test view serializability.

Steps to check whether the given schedule is view serializable or not

Step 1 : If the schedule is conflict serializable then it is surely view serializable because
conflict serializability is a restricted form of view serializability.

Database Management Systems 5 - 21 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Step 2 : If it is not conflict serializable schedule then check whether there exist any blind
write operation. The blind write operation is a write operation without reading a value. If
there does not exist any blind write then that means the given schedule is not view
serializable. In other words if a blind write exists then that means schedule may or may
not be view conflict.

Step 3 : Find the view equivalence schedule

 Example 5.5.7 Consider the following schedules for checking if these are view serializable or

not.

T1 T2 T3

 W(C)

 R(A)

 W(B) R(B)

R(C)

 W(B)

W(B)

Solution :

i) The initial read operation is performed by T2 on data item A or by T1 on data item C.
Hence we will begin with T2 or T1. We will choose T2 at the beginning.

ii) The final write is performed by T1 on the same data item B. Hence T1 will be at the

last position.
iii) The data item C is written by T3 and then it is read by T1. Hence T3 should appear

before T1. Thus we get the order of schedule of view serializability as T2 – T1 – T3

 Example 5.5.8 Consider the following schedules for checking if these are view serializable or

not.

T1 : read(A)

 read(B)

 if A=0 then B:=B+1;

 write(B)

T2 : read(B);

 read(A);

 if B=0 then A:=A+1;

 write(A)

Database Management Systems 5 - 22 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Let consistency requirement be A=0 V B=0 with A=B=0 the initial values.

1) Show that every serial execution involving these two transactions preserves the

consistency of the Database ?

2) Show a concurrent execution of T1 and T2 that produces a non serializable schedule ?

3) Is there a concurrent execution of T1 and T2 that produces a serializable schedule ?
Solution : 1) There are two possible executions : T1 -> T2 or T2->T1

Consider case T1->T2 then

A B

0 0

0 1

0 1

A B =A OR B = F T = T. This means consistency is met.
Consider case T2 -> T1 then

A B

0 0

1 0

1 0

A B = A OR B = F T = T. This means consistency is met.
2) The concurrent execution means interleaving of transactions T1 and T2. It can be

T
1

 T
2

R(A)

 R(B)

 R(A)

R(B)

If A=0 then

B=B+1

If B=0 then

A=A+1

W(A)

W(B)

This is a non-serializable schedule.

3) There is no concurrent execution resulting in a serializable schedule.

Database Management Systems 5 - 23 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 Example 5.5.9 Consider the following schedules. The actions are listed in the order they are

scheduled, and prefixed with the transaction name.

S1 : T1 : R(X), T2 : R(X), T1 : W(Y), T2 : W(Y) T1 : R(Y), T2 : R(Y)

S2 : T3 : W(X), T1 : R(X), T1 : W(Y), T2 : R(Z), T2 : W(Z) T3 : R(Z)

For each of the schedules, answer the following questions :

i) What is the precedence graph for the schedule ?

ii) Is the schedule conflict-serializable ? If so, what are all the conflict equivalent serial

 schedules ?

iii) Is the schedule view-serializable ? If so, what are all the view equivalent serial

schedules ?
Solution :

i) We will find conflicting operations. Two operations are called as conflicting
operations if all the following conditions hold true for them -

 Both the operations belong to different transactions.

 Both the operations are on same data item.

 At least one of the two operations is a write operation

For S1 : From above given example in the top to bottom scanning we find the
conflict as

o T1 : W(Y), T2 : W(Y) and

o T2 : W(Y), T1 : R(Y)

Hence we will build the precedence graph. Draw the edge between conflicting
transactions. For example in above given scenario, the conflict occurs while moving from
T1 : W(Y) to T2 : W(Y). Hence edge must be from T1 to T2. Similarly for second conflict,
there will be the edge from T2 to T1.

Fig. 5.5.9 Precedence graph for S1

For S2 : The conflicts are

o T3 : W(X), T1 : R(X)

o T2 : W(Z) T3 : R(Z)

Database Management Systems 5 - 24 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Hence the precedence graph is as follows -

Fig. 5.5.10 Precedence graph for S
2

ii)

o S1 is not conflict-serializable since the dependency graph has a cycle.

o S2 is conflict-serializable as the dependency graph is acylic. The order T2-T3-T1 is

the only equivalent serial order.

iii)

o S1 is not view serializable.

o S2 is trivially view-serializable as it is conflict serializable. The only serial order
allowed is T2-T3-T1.

 Example 5.5.10 Check whether following schedule is view serializable or not. Justify your

answer. (Note : T1 and T2 are transactions). Also explain the concept of view equivalent

schedules and conflict equivalent schedule considering the example schedule given below

 T1 T2
read (A)
A: = A - 50

write (A)
 read (A)

temp: = A*0.1
A: = A - temp

 write (A)
read (B)
B: = B + 50

write (B)
 read (B)

B: = B + temp
 write (B)

 SPPU : Dec 18,19, End Sem, Marks 9
Solution :

Step 1 : We will first find if the given schedule is conflict serializable or not. For that
purpose, we will find the conflicting operations. These are as shown below -

Database Management Systems 5 - 25 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

The precedence graph is as follows –

Fig. 5.5.11 Precedence graph

As there exists no cycle, the schedule is conflict serializable. The possible serializability
order can be T1-T2

Now we check it for view serializability. As we get the serializability order as T1 – T2,
we will find the view equivalence with the given schedule as serializable schedule.

Let S be the given schedule as given in the problem statement. Let the serializable
schedule is S’={T1,T2}. These two schedules are represented as follows

T1 T2 T1 T2
read (A)
A: = A - 50

 read (A)
A: = A - 50

write (A) write (A)
 read (A)

temp: = A*0.1
A: = A - temp

 read (B)
B: = B + 50

 write (A) write (B)
read (B)
B: = B + 50

 read (A)
temp: = A*0.1
A: = A - temp

write (B) write (A)
 read (B)

B: = B + temp
 read (B)

B: = B + temp
 write (B) write (B)

Schedule S Schedule S’

Database Management Systems 5 - 26 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Now we will check the equivalence between them using following conditions –

1. Initial Read

 In schedule S initial read on A is in transaction T1. Similarly initial read on B is in
transaction T1.

 Similarly in schedule S’, initial read on A is in transaction T1. Similarly initial read
on B is in transaction T1.

2. Final Write

 In schedule S final write on A is in transaction T2. Similarly final write on B is in
transaction T2.

 In schedule S’ final write on A is in transaction T2. Similarly final write on B is in
transaction T2

3. Intermediate Read

 Consider schedule S for finding intermediate read operation.

Similarly consider schedule S’ for finding intermediate read operation.

Database Management Systems 5 - 27 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

In both the schedules S and S’, the intermediate read operation is performed by T2
only after T1 performs write operation.

Thus all the above three conditions get satisfied. Hence given schedule is view
serializable.

 Review Question

1. Explain the concept of conflict serializability with example. Since every conflict-serializable
schedule is view serializable, why do we emphasize conflict serializability rather than view
serializability ? SPPU : Dec 18,19, End Sem, Marks 8

 5.6 Recoverable and Non-recoverable Schedules

 The serializable schedule can be made consistent by applying conflict serializability
or view serializability.

 The serializable order makes a transaction isolation. But during the execution of

concurrent transactions in a given schedule, some of the transaction may get

failed(may be due to hardware or software failure)

 If the transaction gets failed we need to undo the effect of this transaction to ensure

the atomicity property of transaction. This makes the schedule acceptable even after

the failure.

 The schedule can be made acceptable by two techniques namely - Recoverable

Schedule and Cascadeless schedule.

Database Management Systems 5 - 28 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 5.6.1 Recoverable Schedule

Definition : A recoverable schedule is one where, for each pair of transactions Ti and
Tj such that Tj reads a data item previously written by Ti, the commit operation of Ti
appears before the commit operation of Tj .

For example : Consider following schedule, consider A = 100
T1 T2

R(A)

A=A+50

W(A)

 R(A)

 A=A–20

 W(A)

 Commit

Some transaction…

Commit

 The above schedule is inconsistent if failure occurs after the commit of T2.

 It is because T2 is dependable transaction on T1. A transaction is said to be

dependable if it contains a dirty read.

 The dirty read is a situation in which one transaction reads the data immediately
after the write operation of previous transaction.

T1 T2

R(A)

A=A+50

W(A)

 R(A)

 A=A–20

 W(A)

 Commit

Commit

Failure

Dirty read

Database Management Systems 5 - 29 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Now if the dependable transaction i.e. T2 is committed first and then failure occurs
then if the transaction T1 makes any changes then those changes will not be known
to the T2. This leads to non recoverable state of the schedule.

 To make the schedule recoverable we will apply the rule that - commit the
independent transaction before any dependable transaction.

 In above example independent transaction is T1, hence we must commit it before the
dependable transaction i.e. T2.

 The recoverable schedule will then be -
T1 T2

R(A)

A=A+50

W(A)

 R(A)

 A=A–20

 W(A)

Commit

 Commit

 5.6.2 Cascadeless Schedule

Definition : If in a schedule, a transaction is not allowed to read a data item until the
last transaction that has written that data item is committed or aborted, then such a
schedule is known as a cascadeless schedule.

The cascadeless schedule allows only committed Read operation. For example :

T1 T2 T3

R(A)

A=A+50

W(A)

Commit

 R(A)

 A=A–20

 W(A)

 Commit

 R(A)

 W(A)

Database Management Systems 5 - 30 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

In above schedule at any point if the failure occurs due to commit operation before
every Read operation of each transaction, the schedule becomes recoverable and
atomicity can be maintained.

Part II : Concurrency Control

 5.7 Concurrency Control

 One of the fundamental properties of a transaction is isolation.

 When several transactions execute concurrently in the database, however, the
isolation property may no longer be preserved.

 A database can have multiple transactions running at the same time. This is called
concurrency.

 To preserve the isolation property, the system must control the interaction among
the concurrent transactions; this control is achieved through one of a variety of
mechanisms called concurrency control schemes.

 Definition of concurrency control : A mechanism which ensures that simultaneous
execution of more than one transactions does not lead to any database
inconsistencies is called concurrency control mechanism.

 The concurrency control can be achieved with the help of various protocols such as
- lock based protocol, deadlock handling, multiple granularity, timestamp based
protocol, and validation based protocols.

 5.8 Need for Concurrency

 Following are the purposes of concurrency control –

o To ensure isolation

o To resolve read-write or write-write conflicts

o To preserve consistency of database

 Concurrent execution of transactions over shared database creates several data
integrity and consistency problems - these are

1) Lost Update Problem : This problem occurs when two transactions that access the same
database items have their operations interleaved in a way that makes the value of some
database item incorrect.

For example - Consider following transactions

1) Salary of employee is read during transaction T1.

Database Management Systems 5 - 31 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

2) Salary of employee is read by another transaction T2.

3) During transaction T1, the salary is incremented by ` 200

4) During transaction T2, the salary is incremented by ` 500

The result of the above sequence is that the update made by transaction T1 is
completely lost. Therefor this problem is called as lost update problem.

2) Dirty Read or Uncommited Read Problem : The dirty read is a situation in which one
transaction reads the data immediately after the write operation of previous transaction

T1 T2

R(A)

A=A+50

W(A)

 R(A)

 A=A–20

 W(A)

 Commit

Commit

For example - Consider following transactions -

Assume initially salary is = ` 1000

Dirty read

Database Management Systems 5 - 32 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

1) At the time t1, the transaction T2 updates the salary to ` 1200

2) This salary is read at time t2 by transaction T1. Obviously it is ` 1200

3) But at the time t3, the transaction T2 performs Rollback by undoing the changes
made by T1 and T2 at time t1 and t2.

4) Thus the salary again becomes = ` 1000. This situation leads to Dirty Read or
Uncommited Read because here the read made at time t2 (immediately after

update of another transaction) becomes a dirty read.

3) Non-repeatable read problem

This problem is also known as inconsistent analysis problem. This problem occurs
when a particular transaction sees two different values for the same row within its
lifetime. For example –

1) At time t1, the transaction T1 reads the salary as ` 1000

2) At time t2 the transaction T2 reads the same salary as ` 1000 and updates it to `1200

3) Then at time t3, the transaction T2 gets committed.

4) Now when the transaction T1 reads the same salary at time t4, it gets different value
than what it had read at time t1. Now, transaction T1 cannot repeat its reading

operation. Thus inconsistent values are obtained.

Database Management Systems 5 - 33 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Hence the name of this problem is non-repeatable read or inconsistent analysis
problem.

4) Phantom read problem

The phantom read problem is a special case of non repeatable read problem.

This is a problem in which one of the transaction makes the changes in the database
system and due to these changes another transaction can not read the data item which it
has read just recently. For example –

1) At time t1, the transaction T1 reads the value of salary as ` 1000

2) At time t2, the transaction T2 reads the value of the same salary as ` 1000

3) At time t3, the transaction T1 deletes the variable salary.

4) Now at time t4, when T2 again reads the salary it gets error. Now transaction T2 can

not identify the reason why it is not getting the salary value which is read just few
time back.

This problem occurs due to changes in the database and is called phantom read
problem.

 5.9 Lock based Protocol SPPU : Dec.-17,18,19, May-18,19, Marks 9

 5.9.1 Why Do We Need Lock ?

 One of the method to ensure the isolation property in transactions is to require that
data items be accessed in a mutually exclusive manner. That means, while one
transaction is accessing a data item, no other transaction can modify that data item.

 The most common method used to implement this requirement is to allow a
transaction to access a data item only if it is currently holding a lock on that item.

 Thus the lock on the operation is required to ensure the isolation of transaction.

 5.9.2 Working of Lock

 Concept of protocol : The lock based protocol is a mechanism in which there is
exclusive use of locks on the data item for current transaction.

Database Management Systems 5 - 34 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Types of locks : There are two types of locks used –

Fig. 5.9.1 Types of locks

i) Shared lock : The shared lock is used for reading data items only. It is denoted by
Lock-S. This is also called as read lock.

ii) Exclusive lock : The exclusive lock is used for both read and write operations. It is
denoted as Lock-X. This is also called as write lock.

 The compatibility matrix is used while working on set of locks. The concurrency
control manager checks the compatibility matrix before granting the lock. If the two
modes of transactions are compatible to each other then only the lock will be
granted.

 In a set of locks may consists of shared or exclusive locks. Following matrix
represents the compatibility between modes of locks.

 S X

S T F

X F F

Fig. 5.9.2 Compatibility matrix for locks

Here T stands for True and F stands for False. If the control manager get the
compatibility mode as True then it grant the lock otherwise the lock will be denied.

 For example : If the transaction T1 is holding a shared lock in data item A, then the
control manager can grant the shared lock to transaction T2 as compatibility is True.

But it cannot grant the exclusive lock as the compatibility is false. In simple words if
transaction T1 is reading a data item A then same data item A can be read by
another transaction T2 but cannot be written by another transaction.

 Similarly if an exclusive lock (i.e. lock for read and write operations) is hold on the
data item in some transaction then no other transaction can acquire shared or
exclusive lock as the compatibility function denotes F. That means of some
transaction is writing a data item A then another transaction can not read or write
that data item A.

Database Management Systems 5 - 35 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Hence the rule of thumb is

i) Any number of transactions can hold shared lock on an item.

ii) But exclusive lock can be hold by only one transaction.

 Example of a schedule denoting shared and exclusive locks : Consider following
schedule in which initially A=100. We deduct 50 from A in T1 transaction and Read
the data item A in transaction T2. The scenario can be represented with the help of
locks and concurrency control manager as follows :

 5.9.3 Two Phase Locking Protocol

 The two phase locking is a protocol in which there are two phases :

i) Growing phase (Locking phase) : It is a phase in which the transaction may
obtain locks but does not release any lock.

ii) Shrinking phase (Unlocking phase) : It is a phase in which the transaction may
release the locks but does not obtain any new lock.

 Lock Point : The last lock position or first unlock position is called lock point.

Database Management Systems 5 - 36 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 For example -

Lock(A)

Lock(B)

Lock(C)

….

…

…

Unlock(A)

Unlock(B)

Unlock(C)

Consider following transactions
T1 T2

Lock-X(A) Lock-S(B)

Read(A) Read(B)

A=A–50 Unlock-S(B)

Write(A)

Lock-X(B)

Unlock-X(A)

B=B+100 Lock-S(A)

Write(B) Read(A)

Unlock-X(B) Unlock-S(A)

The important rule for being a two phase locking is - All lock operations precede all

the unlock operations.
In above transactions T1 is in two phase locking mode but transaction T2 is not in two

phase locking. Because in T2, the shared lock is acquired by data item B, then data item B

is read and then the lock is released. Again the lock is acquired by data item A , then the

data item A is read and the lock is then released. Thus we get lock-unlock-lock-unlock

sequence. Clearly this is not possible in two phase locking.

Lock
Point

Database Management Systems 5 - 37 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 5.9.1 Prove that two phase locking guarantees serializability.
Solution :

 Serializability is mainly an issue of handling write operation. Because any
inconsistency may only be created by write operation.

 Multiple reads on a database item can happen parallely.
 2-Phase locking protocol restricts this unwanted read/write by applying exclusive

lock.
 Moreover, when there is an exclusive lock on an item it will only be released in

shrinking phase. Due to this restriction there is no chance of getting any
inconsistent state.

The serializability using two phase locking can be understood with the help of

following example :

Consider two transactions
T1 T2

R(A)

 R(A)

R(B)

W(B)

Step 1 : Now we will apply two phase locking. That means we will apply locks in
growing and shrinking phase

T1 T2

Lock-S(A)

R(A)

 Lock-S(A)

 R(A)

Lock-X(B)

R(B)

W(B)

Unlock-X(B)

 Unlock-S(A)

Database Management Systems 5 - 38 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Note that above schedule is serializable as it prevents interference between two
transactions.

The serializability order can be obtained based on the lock point. The lock point is
either last lock operation position or first unlock position in the transaction.

The last lock position is in T1, then it is in T2. Hence the serializability will be T1->T2
based on lock points. Hence The serializability sequence can be R1(A);R2(A);R1(B);W1(B)

Advantages of two phase locking

(1) It ensures serializability.

Disadvantages of two phase locking protocol

(1) It leads to dealocks.

(2) It leads to cascading rollback.

Problems in two phase locking

The two phase locking protocol leads to two problems - Deadlock and cascading roll
back.

1) Deadlock : The deadlock problem can not be solved by two phase locking.
Deadlock is a situation in which when two or more transactions have got a lock and
waiting for another locks currently held by one of the other transactions.

For example

T1 T2

Lock-X(A) Lock-X(B)

Read(A) Read(B)

A=A–50 B=B+100

Write(A) Write(B)

Delayed, wait
for T1 to

release Lock
on A

Delayed, wait
for T2 to release

Lock on B

Database Management Systems 5 - 39 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

2) Cascading Rollback : Cascading rollback is a situation in which a single transaction
failure leads to a series of transaction rollback. For example -

T1 T2 T3

Read(A)

Read(B)

C=A+B

Write(C)

 Read(C)

 Write(C)

 Read(C)

When T1 writes value of C then only T2 can read it. And when T2 writes the value of C
then only transaction T3 can read it. But if the transaction T1 gets failed then automatically
transactions T2 and T3 gets failed.

The simple two phase locking does not solve the cascading rollback problem. To
solve the problem of cascading Rollback two types of two phase locking mechanisms can
be used.

 5.9.3.1 Types of Two Phase Locking

1) Strict two phase locking : The strict 2PL protocol is a basic two phase protocol but
all the exclusive mode locks be held until the transaction commits. That means in
other words all the exclusive locks are unlocked only after the transaction is
committed. That also means that if T1 has exclusive lock, then T1 will release the

exclusive lock only after commit operation, then only other transaction is allowed to
read or write. For example - Consider two transactions

T1 T2

W(A)

 R(A)

Database Management Systems 5 - 40 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

If we apply the locks then
T1 T2

Lock-X(A)

W(A)

Commit

Unlock(A)

 Lock-S(A)

 R(A)

 Unlock-S(A)

Thus only after commit operation in T1, we can unlock the exclusive lock. This ensures

the strict serializability.
Thus compared to basic two phase locking protocol, the advantage of strict 2PL

protocol is it ensures strict serializability.
2) Rigorous two phase locking : This is stricter two phase locking protocol. Here all

locks are to be held until the transaction commits. The transactions can be
seriealized in the order in which they commit.

Example - Consider transactions
T1

R(A)

R(B)

W(B)

If we apply the locks then
T1

Lock-S(A)

R(A)

Lock-X(B)

R(B)

W(B)

Commit

Unlock(A)

Unlock(B)

Thus the above transaction uses rigorous two phase locking mechanism.

Database Management Systems 5 - 41 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 5.9.2 Consider the following two transactions :
T1 : read(A)Read(B);

If A=0 then B=B+1;
Write(B)
T2 : read(B); read(A)

If B=0 then A=A+1
Write(A)
Add lock and unlock instructions to transactions T1 and T2, so that they observe two phase

locking protocol. Can the execution of these transactions result in deadlock ?
Solution :

T1 T2

Lock-S(A) Lock-S(B)

Read(A) Read(B)

Lock-X(B) Lock-X(A)

Read(B) Read(A)

if A=0 then B=B+1 if B=0 then A=A+1

Write(B) Write(A)

Unlock(A) Unlock(B)

Commit Commit

Unlock(B) Unlock(A)

This is lock-unlock instruction sequence help to satisfy the requirements for strict two
phase locking for the given transactions.

The execution of these transactions result in deadlock. Consider following partial
execution scenario which leads to deadlock.

T1 T2

Lock-S(A) Lock-S(B)

Read(A) Read(B)

Lock-X(B) Lock-X(A)

Now it will wait for T2 to

release exclusive lock on A

Now it will wait for T1 to

release exclusive lock on B

Database Management Systems 5 - 42 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Review Questions

1. A transaction may be waiting for more time for an Exclusive (X) lock on an item, while a
sequence of other transactions request and are granted as Shared (S) lock on the same item.
What is this problem ? How it is solved by two phase lock protocol ?

 SPPU : Dec.-17, End Sem,Marks 8

2. Explain the two phase lock protocol for concurrency control. Also explain its two versions :
strict two phase lock protocol and rigorous two phase lock protocol.

 SPPU : May-18, End Sem, Marks 8

3. Explain the Two Phase lock Protocol and show how it ensures conflict serializability. Two
Phase lock protocol does not ensure freedom from deadlock explain with necessary example.
Also explain its two versions : strict two phase lock protocol and rigorous two phase lock
protocol. SPPU : Dec.-18, 19, End Sem, Marks 9

4. What benefit does rigorous two-phase locking provide ? How does it compare with other forms
of two - phase locking ? SPPU : May-19, End Sem, Marks 9

 5.10 Time-stamp based Protocol SPPU : May-19, Dec.-17, Marks 9

 The time stamp ordering protocol is a scheme in which the order of transaction is
decided in advance based on their timestamps. Thus the schedules are serialized
according to their timestamps.

• The timestamp-ordering protocol ensures that any conflicting read and write
operations are executed in timestamp order.

• A larger timestamp indicates a more recent transaction or it is also called as
younger transaction while lesser timestamp indicates older transaction.

• Assume a collection of data items that are accessed, with read and write operations,
by transactions.

• For each data item X the DBMS maintains the following values : –

o RTS(X) : The timestamp on which object X was last read (by some transaction
Ti , i.e., RTS(X):=TS(Ti)) [Note that : RTS stands for Read Time Stamp]

o WTS(X) : The timestamp on which object X was last written (by some
transaction Tj , i.e., WTS(X):=TS(Tj)) [Note that : WTS stands for Write Time

Stamp]

• For the following algorithms we use the following assumptions : A data item X in
the database has a RTS(X) and WTS(X). These are actually the timestamps of read
and write operations performed on data item X at latest time.

• A transaction T attempts to perform some action (read or write) on data item X on
some timestamp and we call that timestamp as TS(T).

• By timestamp ordering algorithm we need to decide whether transaction T has to be
aborted or T can continue execution.

Database Management Systems 5 - 43 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Basic Timestamp Ordering Algorithm

Case 1 (Read) : Transaction T issues a read(X) operation

i) If TS(T) < WTS(X), then read(X) is rejected. T has to abort and be rejected.

ii) If WTS(X) TS(T), then execute read(X) of T and update RTS(X).

Case 2 (Write) : Transaction T issues a write(X) operation

i) If TS(T) < RTS(X) or if TS(T) < WTS(X), then write is rejected

ii) If RTS(X) TS(T) or WTS(X) TS(T), then execute write(X) of T and update WTS(X).

Example for Case 1 (Read operation)

(i) Suppose we have two transactions T1 and T2 with timestamps 10 sec. and 20 sec.

respectively.

10 Sec
T1

20 Sec
T2

R(X)

 W(X)

R(X)

RTS(X) and WTS(X) is initially = 0
Then RTS(X) = 10, when transaction T1 executes

After that WTS(X) = 20 when transaction T2 executes

Now if read operation R(X) occurs on transaction T1 at TS(T1) = 10 then

TS(T1) i.e. 10 <WTS(X) i.e. 20, hence we have to reject second read operation on T1 i.e.

Fig. 5.10.1

Database Management Systems 5 - 44 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

ii) Suppose we have two transactions T1 and T2 with timestamps 10 sec. and 20 sec.

respectively.
10 Sec

T1

20 Sec

T2

W(X)

 R(X)

RTS(X) and WTS(X) is initially = 0

Then WTS(X) =10 as transaction T1 executes.

Now if Read operation R(X) occurs on transaction T2 at TS(T2) = 20 then

TS(T2) i.e. 20 >WTS(X) which is 10, hence we accept read operation on T2. The
transaction T2 will perform read operation and now RTS will be updated as,

RTS(X) = 20

Example for Case 2 (Write Operation)

i) Suppose we have two transactions T1 and T2 with timestamps 10 sec. and 20 sec.

respectively.

10 Sec.

T1

20 Sec.

T2

R(X)

 W(X)

W(X)

RTS(X) and WTS(X) is initially = 0
Then RTS(X) = 10, when transaction T1 executes

After that WTS(X) = 20 when transaction T2 executes

Now if write operation W(X) occurs on transaction T1 at TS(T1) = 10 then

TS(T1) i.e. 10 <WTS(X), hence we have to reject second write operation on T1 i.e.

Database Management Systems 5 - 45 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 5.10.2

ii) Suppose we have two transactions T1 and T2 with timestamps 10 sec. and 20 sec.
respectively.

10 Sec

T1

20 Sec

T2

W(X)

 W(X)

RTS(X) and WTS(X) is initially = 0
Then WTS(X) = 10 as transaction T1 executes.

Now if write operation W(X) occurs on transaction T2 at TS(T2) = 20 then

TS(T2) i.e. 20 >WTS(X) which is 10, hence we accept write operation on T2. The
transaction T2 will perform write operation and now WTS will be updated as,

WTS(X) = 20

Advantages and disadvantages of time stamp ordering

Advantages

1) Schedules are serializable

2) No waiting for transaction and hence there is no deadlock situation.

Disadvantages

1) Schedules are not recoverable once transactions occur.

2) Same transaction may be continuously aborted or restarted.

Database Management Systems 5 - 46 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Review Question

1. Suppose a transaction , issues a read command on data item Q. How time - stamp based
protocol decides whether to allow the operation to be executed or not using time-stamp based
protocol of concurrency control. SPPU : Dec.-17, May-19, End Sem, Marks 9

 5.11 Deadlocks Handling

Deadlock is a specific concurrency problem in which two transactions depend on each
other for something.

For example - Consider that transaction T1 holds a lock on some rows of table A and
needs to update some rows in the B table. Simultaneously, transaction T2 holds locks on
some rows in the B table and needs to update the rows in the A table held by transaction
T1.

Fig. 5.11.1

Now, the main problem arises. Now transaction T1 is waiting for T2 to release its lock
and similarly, transaction T2 is waiting for T1 to release its lock. All activities come to a

halt state and remain at a standstill. This situation is called deadlock in DBMS.

Definition : Deadlock can be formally defined as - “ A system is in deadlock state if
there exists a set of transactions such that every transaction in the set is waiting for
another transaction in the set. “

There are four conditions for a deadlock to occur

A deadlock may occur if all the following conditions holds true.
1. Mutual exclusion condition : There must be at least one resource that cannot be

used by more than one process at a time.
2. Hold and wait condition : A process that is holding a resource can request for

additional resources that are being held by other processes in the system.
3. No preemption condition : A resource cannot be forcibly taken from a process.

Only the process can release a resource that is being held by it.
4. Circular wait condition : A condition where one process is waiting for a resource

that is being held by second process and second process is waiting for third process

Database Management Systems 5 - 47 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

….so on and the last process is waiting for the first process. Thus making a circular
chain of waiting.

Deadlock can be handled using two techniques -

1. Deadlock prevention 2. Deadlock detection and deadlock recovery

1. Deadlock prevention :

For large database, deadlock prevention method is suitable. A deadlock can be
prevented if the resources are allocated in such a way that deadlock never occur. The
DBMS analyzes the operations whether they can create deadlock situation or not, If they
do, that transaction is never allowed to be executed.

There are two techniques used for deadlock prevention -

 i) Wait-Die :

 In this scheme, if a transaction requests for a resource which is already held with a
conflicting lock by another transaction then the DBMS simply checks the timestamp
of both transactions. It allows the older transaction to wait until the resource is
available for execution.

 Suppose there are two transactions Ti and Tj and let TS(T) is a timestamp of any
transaction T. If T2 holds a lock by some other transaction and T1 is requesting for
resources held by T2 then the following actions are performed by DBMS :

o Check if TS(Ti) < TS(Tj) - If Ti is the older transaction and Tj has held some
resource, then Ti is allowed to wait until the data-item is available for

execution. That means if the older transaction is waiting for a resource which is
locked by the younger transaction, then the older transaction is allowed to wait
for resource until it is available.

o Check if TS(Ti) < TS(Tj) - If Ti is older transaction and has held some resource
and if Tj is waiting for it, then Tj is killed and restarted later with the random

delay but with the same timestamp.

Timestamp is a way of assigning priorities to each transaction when it starts. If
timestamp is lower then that transaction has higher priority. That means oldest
transaction has highest priority.

For example -
Let T1 is a transaction which requests the data item acquired by transaction T2.

Similarly T3 is a transaction which requests the data item acquired by transaction T2.

Database Management Systems 5 - 48 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 5.11.2

Here TS(T1) i.e. Time stamp of T1 is less than TS(T3). In other words T1 is older than T3 .

Hence T1 is made to wait while T3 is rolledback.

 ii) Wound- wait :

o In wound wait scheme, if the older transaction requests for a resource which is
held by the younger transaction, then older transaction forces younger one to
kill the transaction and release the resource. After some delay, the younger
transaction is restarted but with the same timestamp.

o If the older transaction has held a resource which is requested by the younger
transaction, then the younger transaction is asked to wait until older releases it.

Suppose T1 needs a resource held by T2 and T3 also needs the resource held by T2, with
TS(T1) = 5, TS(T2) = 8 and TS(T3) = 10, then T1 being older waits and T3 being younger dies.

After the some delay, the younger transaction is restarted but with the same timestamp.

This ultimately prevents a deadlock to occur.

To summarize
 Wait-Die Wound-wait

Older transaction needs a
data item held by younger
transaction

Older transaction waits Younger transaction dies.

Younger transaction needs
a data item held by older
transaction

Younger transaction dies Younger transaction dies.

2. Deadlock detection :

 In deadlock detection mechanism, an algorithm that examines the state of the
system is invoked periodically to determine whether a deadlock has occurred or
not. If deadlock is occurrence is detected, then the system must try to recover from
it.

Database Management Systems 5 - 49 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Deadlock detection is done using wait for graph method.

Wait for graph

o In this method, a graph is created based on the transaction and their lock. If the
created graph has a cycle or closed loop, then there is a deadlock.

o The wait for the graph is maintained by the system for every transaction which
is waiting for some data held by the others. The system keeps checking the
graph if there is any cycle in the graph.

o This graph consists of a pair G = (V, E), where V is a set of vertices and E is a set
of edges.

o The set of vertices consists of all the transactions in the system.
o When transaction Ti requests a data item currently being held by transaction Tj ,

then the edge Ti → Tj is inserted in the wait-for graph. This edge is removed
only when transaction Tj is no longer holding a data item needed by transaction
Ti .

For example - Consider following transactions, We will draw a wait for graph for this
scenario and check for deadlock.

T1 T2

R(A)

 R(A)

W(A)

R(B)

 W(A)

W(B)

We will use three rules for designing the wait-for graph -

Rule 1 : If T1 has Read operation and then T2 has Write operation then draw an edge
T1->T2.

Rule 2 : If T1 has Write operation and then T2 has Read operation then draw an edge
T1->T2.

Rule 3 : If T1 has Write operation and then T2 has Write operation then draw an edge
T1->T2.

Database Management Systems 5 - 50 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Let us draw wait-for graph

Step 1 : Draw vertices for all the transactions

Fig. 5.11.3

Step 2 : We find the Read-Write pair from two different transactions reading from top to
bottom. If such as pair is found then we will add the edges between corresponding
directions. For instance -

Fig. 5.11.4

Step 3 :

Fig. 5.11.5

As cycle is detected in the wait-for graph there is no need to further process. The
deadlock is present in this transaction scenario.

 Example 5.11.1 Give an example of a scenario where two phase locking leads to deadlock.
Solution : Following scenario of execution of transactions can result in deadlock.

Database Management Systems 5 - 51 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

T1 T2

Lock – S (A)

 Lock – S (B)

 Read (B)

Read (A)

Lock – X (B)

 Lock – X (A)

In above scenario, transaction T1 makes an exclusive lock on data item B and then
transaction T2 makes an exclusive lock on data item A. Here unless and until T1 does not
give up the lock (i.e. unlock) on B; T2 cannot read / write it. Similarly unless and until T2
does not give up the lock on A; T1 cannot read or write on A.

This is a purely deadlock situation in two phase locking.
 Example 5.11.2 What is deadlock ? Consider following sequence of actions listed in order they

are submitted to DBMS
Sequence : S1:R1(A)W2(B);R1(B);R3(C);w2(c);W4(B);W3(A)
Draw waits-for graph in case of deadlock situation

Solution :

Step 1 : We will rewrite the schedule as,
T1 T2 T3 T4

R1(A)

 W2(B)

R1(B)

 R3(C)

 W2(C)

 W4(B)

 W3(A)

These two instructions
cause a deadlock
situation.

Database Management Systems 5 - 52 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 2 :

Fig. 5.11.6

As there are four transactions, there will be four nodes.

Step 3 : We find the Read-Write pair from two different transactions reading from top
to bottom. If such as pair is found then we will add the edges between corresponding
directions. For instance -

Hence the wait-for graph will be,

Fig. 5.11.7

The cycle is detected in wait-for graph as T1 T3 T2. That means deadlock is
present in this transaction scenario.

 5.12 Recovery Concepts

 5.12.1 Purpose of Database Recovery

 The purpose of recovery is to bring the database into the last consistent stage prior
to occurrence of failure.

Database Management Systems 5 - 53 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The recovery must preserve all the ACID properties of transaction. The ACID
properties are - Atomicity, consistency, isolation and durability.

 Thus recovery ensures high availability of the database for transaction purpose.

 For example - If the system crashes before the amount transfer from one account to
another then either one or both the accounts may have incorrect values. Here the
database must be recovered before the modification takes place.

 5.12.2 Failure Classification

Various types of failures are –

1) Transaction failure : Following are two types of errors due to which the transaction gets
failed.

 Logical error :
i) This error is caused due to internal conditions such as bad input, data not found,

overflow of resource limit and so on.
ii) Due to logical error the transaction can not be continued.

 System error :

i) When the system enters in an undesired state and then the transaction can not be
continued then this type of error is called as system error.

2) System crash : The situation in which there is a hardware malfunction, or a bug in the
database software or the operating system, and because of which there is a loss of the
content of volatile storage, and finally the transaction processing come to a halt is called
system crash.

3) Disk failure : A disk block loses its content as a result of either a head crash or failure
during a data-transfer operation. The backup of data is maintained on the secondary
disks or DVD to recover from such failure.

Database Management Systems 5 - 54 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 5.12.3 Storage

A DBMS stores the data on external storage because the amount of data is very huge
and must persist across program executions.

The storage structure is a memory structure in the system. It has following categories –

1) Volatile :

 Volatile memory is a primary memory in the system and is placed along with the
CPU.

 These memories can store only small amount of data, but they are very fast. For
example - main memory, cache memory.

 A volatile storage cannot survive system crashes.

 That means data in these memories will be lost on failure.

2) Non volatile :

 Non volatile memory is a secondary memory and is huge in size. For example :
Hard disk, Flash memory, Magnetic tapes.

 These memories are designed to withstand system crashes.

3) Stable :

 Information residing in stable storage is never lost.

 To implement stable storage, we replicate the information in several nonvolatile
storage media (usually disk) with independent failure modes.

Stable Storage Implementation

 Stable storage is a kind of storage on which the information residing on it is never
lost.

 Although stable storage is theoretically impossible to obtain it can be approximately
built by applying a technique in which data loss is almost impossible.

 That means the information is replicated in several nonvolatile storage media with
independent failure modes.

 Updates must be done with care to ensure that a failure during an update to stable
storage does not cause a loss of information.

Database Management Systems 5 - 55 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 5.13 Recovery Methods

Following are commonly used crash recovery methods –

1) Shadow paging

2) Log-based recovery

 a. Deferred Update

 b. Immediate Update

3) Checkpointing

 5.14 Shadow-paging

 Shadow paging is a recovery scheme in which database is considered to be made up
of number of fixed size disk pages.

 A directory or a page table is constructed with n number of pages where each ith
page points to the ith database page on the disk. (Refer Fig. 5.14.1)

Fig. 5.14.1 Demonstration of shadow paging

 The directory can be kept in the main memory.

 When a transaction begins executing, the current directory-whose entries point to
the most recent or current database pages on disk-is copied into a another directory
called shadow directory.

 The shadow directory is then saved on disk while the current directory is used by
the transaction.

 During the execution of transaction, the shadow directory is never modified.

Database Management Systems 5 - 56 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 When a write operation is to be performed then the new copy of modified database
page is created but the old copy of database page is never overwritten. This newly
created database page is written somewhere else.

 The current directory will point to newly modified web page and the shadow page
directory will point to the old web page entries of database disk.

 When the failure occurs then the modified database pages and current directory is
discarded.

 The state of database before the failure occurs is now available through the shadow
directory and this state can be recovered using shadow directory pages.

 This technique does not require any UNDO/REDO operation.

 5.15 Check Points

 Checkpoint is a mechanism where all the previous logs are removed from the
system and stored permanently in a storage disk.

 Checkpoint declares a point before which the DBMS was in consistent state, and all
the transactions were committed.

 The recovery system reads the logs backwards from the end to the last checkpoint.

 Performing a checkpoint consists of the following operations :

o Suspending executions of transactions temporarily;

o Writing (force-writing) all modified database buffers of committed transactions
out to disk;

o Writing a checkpoint record to the log; and

o Writing (force-writing) all log records in main memory out to disk.

 A checkpoint record usually contains additional information, including a list of
transactions active at the time of the checkpoint.

 Many recovery methods (including the deferred and immediate update methods)
need this information when a transaction is rolled back, as all transactions active at
the time of the checkpoint and any subsequent ones may need to be redone.

 Since checkpoints cause some loss in performance while they are being taken, their
frequency should be reduced if fast recovery is not critical.

 If we need fast recovery check-pointing frequency should be increased. If the
amount of stable storage available is less, frequent check-pointing is unavoidable.

Database Management Systems 5 - 57 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 5.16 Log-based Recovery : Deferred and Immediate Update
 SPPU : May-18,19, Marks 8

Before discussing the recovery algorithms(deferred and immediate update), let us see
the concept of Log and REDO and UNDO operations.

 5.16.1 Concept of Log

 Log is the most commonly used structure for recording the modifications that is to
be made in the actual database. Hence during the recovery procedure a log file is
maintained.

 A log record maintains four types of operations. Depending upon the type of
operations there are four types of log records -

 1. <Start> Log record : It is represented as <Ti, Start>

 2. <Update> Log record
 3. <Commit> Log record : It is represented as <Ti, Commit>

 4. <Abort> Log record : It is represented as <Ti, Abort>

 The log contains various fields as shown in following Fig. 5.16.1. This structure is
for <update> operation

Transaction
ID(T

i
)

Data Item
Name

Old Value of
Data Item

New Value
of Data Item

Fig. 5.16.1

 For example : The sample log file is

<T1, Start>

< T1,a,10,20>

<T1, Commit>

 The log must be maintained on the stable storage and the entries in the log file are
maintained before actually updating the physical database.

 There are two approaches used for log based recovery technique - Deferred
Database Modification and Immediate Database Modification.

Here 10 represents the old value before commit
operation and 20 is the new value that needs to be
updated in the database after commit operation.

Database Management Systems 5 - 58 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 5.16.2 REDO and UNDO Operation

During transaction execution, the updates are recorded only in the log and in the cache
buffers. After the transaction reaches its commit point and the log is force written to disk
and the updates are recorded in the database.

In order to maintain the atomicity of transaction, the operations can be redone or
undone.

UNDO : This is an operation in which we restore all the old values (BFIM - BeFore
Modification Image) onto the disk. This is called roll-back operation.

REDO : This is an operation in which all the modified values(AFIM - AFter
Modification Image) are restored onto the disk. This is called roll-forward operation.

These operations are recorded in the log as they happen.

Difference between UNDO and REDO

Sr. No. UNDO REDO

1. Makes a change go away. Reproduces a change.

2. Used for rollback and read consistency. Used for rolling forward the changes.

3. Protects the database from inconsistent reads. Protects from data loss.

 5.16.3 Write Ahead Logging Rule

 Before a block of data in main memory is output to the database, all log records
pertaining to data in that block must have been output to stable storage. This rule is
called the Write-Ahead Logging (WAL)

 This rule is necessary because - In the event of a crash or ROLLBACK, the original
content contained in the rollback journal is played back into the database file to
revert the database file to its original state.

 5.16.4 Deferred Database Modification

 In this technique, the database is not updated immediately.
 Only log file is updated on each transaction.
 When the transaction reaches to its commit point, then only the database is

physically updated from the log file.
 In this technique, if a transaction fails before reaching to its commit point, it will not

have changed database anyway. Hence there is no need for the UNDO operation.
The REDO operation is required to record the operations from log file to physical
database. Hence deferred database modification technique is also called as NO
UNDO/REDO algorithm.

Database Management Systems 5 - 59 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 For example :

 Consider two transactions T
1
 and T

2
 as follows :

T1 T2

Read (A, a) Read (C, c)

a = a – 10 c = c – 20

Write (A, a) Write (C, c)

Read (B, b)

b = b + 10

Write (B, b)

If T1 and T2 are executed serially with initial values of A = 100, B = 200 and C = 300,

then the state of log and database if crash occurs

a) Just after write (B, b)

b) Just after write (C, c)
c) Just after <T2, commit>

The result of above 3 scenarios is as follows :

Initially the log and database will be

Log Database

<T1, Start>

<T1, A, 90>

<T1, B, 210>

<T1, Commit>

 A = 90

 B = 210

<T2, Start>

<T2, C, 280>

<T2, Commit>

 C = 280

Database Management Systems 5 - 60 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

a) Just after write (B, b)

Just after write operation, no commit record appears in log. Hence no write operation
is performed on database. So database retains only old values. Hence A = 100 and B = 200
respectively.

Thus the system comes back to original position and no redo operation take place.
The incomplete transaction of T1 can be deleted from log.

b) Just after write (C, c)

The state of log records is as follows
Note that crash occurs before T2 commits. At this point T1 is completed successfully, so

new values of A and B are written from log to database. But as T2 is not committed, there
is no redo (T2) and the incomplete transaction T2 can be deleted from log.

The redo (T1) is done as < T1, commit> gets executed. Therefore A = 90, B = 210 and

C = 300 are the values for database.

c) Just after < T
2
, commit>

The log records are as follows :
< T1, Start>

< T1, A, 90>

< T1, B, 210>

< T1, Commit>

< T2, Start>

< T2, 6, 280>

< T2, Commit>

 Crash occurs here
Clearly both T1 and T2 reached at commit point and then crash occurs. So both redo

(T1) and redo (T2) are done and updated values will be A = 90, B = 210, C = 280.

 5.16.5 Immediate Database Modification

In this technique, the database is updated during the execution of transaction even
before it reaches to its commit point.

If the transaction gets failed before it reaches to its commit point, then the a
ROLLBACK Operation needs to be done to bring the database to its earlier consistent
state. That means the effect of operations need to be undone on the database. For that
purpose both Redo and Undo operations are both required during the recovery. This
technique is known as UNDO/ REDO technique.

Database Management Systems 5 - 61 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

For example : Consider two transaction T1 and T2 as follows :

T1 T2

Read(A,a)

a = a –10

Write(A, a)

Read(B, b)

b = b+10

Write(B, b)

Read(C, c)

c = c – 20

Write(C, c)

Here T1 and T2 are executed serially. Initially A = 100, B = 200 and C = 300

If the crash occurs after
i) Just after Write(B, b) ii) Just after Write(C, c) iii) Just after <T2,Commit>

Then using the immediate Database modification approach the result of above three
scenarios can be elaborated as follows :

 The contents of log and database is as follows :

Log
<T1,Start>

<T1,A,100,90>

<T1,B,200,210>

<T1,Commit>

<T2,Start>

<T2,C,300,280>

<T2,Commit>

Database

A = 90

B = 210

C = 280

The recovery scheme uses two recovery techniques -
i) UNDO (Ti) : The transaction Ti needs to be undone if the log contains <Ti,Start> but

does not contain <Ti,Commit>. In this phase, it restores the values of all data items
updated by Ti to the old values.

ii) REDO (Ti) : The transaction Ti needs to be redone if the log contains both <Ti,Start>
and <Ti,Commit>. In this phase, the data item values are set to the new values as per

the transaction. After a failure has occurred log record is consulted to determine
which transaction need to be redone.

Database Management Systems 5 - 62 Database Transaction Management

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

a) Just after Write (B, b) : When system comes back from this crash, it sees that
there is <T1, Start> but no <T1, Commit>. Hence T1 must be undone. That means
old values of A and B are restored. Thus old values of A and B are taken from
log and both the transaction T1 and T2 are re-executed.

b) Just after Write (C, c) : Here both the redo and undo operations will occur.

c) Undo : When system comes back from this crash, it sees that there is <T2, Start>
but no <T2, Commit>. Hence T2 must be undone. That means old values of C is
restored.

 Thus old value of C is taken from log and the transaction T2 is re-executed.

d) Redo : The transaction T1 must be done as log contains both the <T1,Start> and
<T1,Commit>

 So A = 90, B = 210 and C = 300

e) Just after <T2, Commit> : When the system comes back from this crash, it sees
that there are two transaction T1 and T2 with both start and commit points. That
means T1 and T2 need to be redone. So A = 90, B = 210 and C = 280

 Example 5.16.1 Suppose there is a database system that never fails. Is a recovery manager
require for this system ? Why ?

Solution :

(1) Yes. Even-though the database system never fails, the recovery manager is required
for this system.

(2) During the transaction processing some transactions might be aborted. Such
transactions must be rolled back and then the schedule is continued further.

(3) Thus to perform the rollbacks of aborted transactions recovery manager is required.

 Review Question

1. To ensure atomicity despite failures we uses recovery methods. Explain in detail log-based
recovery method. SPPU : May-18,19 End Sem, Marks 8

Unit - IV
Multiple Choice Questions

Q.1 The properties that are used in transaction management are ______.

 a atomicity b consistency

 c isolation d all of above

Q.2 Transaction must be ______.

 a large b small

 c atomic d all of the above

Q.3 Which of the following has “all-or-none” property ?

 a Atomicity b Durability

 c Isolation d All of the mentioned

Q.4 The initial state of transaction model is ___

 a Init b Active

 c Start d None of these

Q.5 When a transaction executes all its operations successfully , it enters into ____

 a active b aborted

 c partially committed d committed

Q.6 Transaction processing is associated with everything below except ______.

 a producing detail, summery, or exception reports

 b recording a business activity

 c confirming an action or triggering a response

 d maintaining data

Q.7 The property of transaction that persists all the crashes is ______.

 a atomicity b durability

 c isolation d all of the mentioned

Q.8 A set of changes that must be all made together is called as _____.

 a concurrency b decomposition

 c transaction d none of these

Q.9 Two actions on the same data object conflict if at least one of them is _____.

 a read b write

 c read-write d none of these

(5 - 63)

Database Management Systems 5 - 64 Unit - IV

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.10 The last step of transaction in which the transaction executes all its operations successfully

is called as ___.

 a active b aborted

 c commit d partially commit

Q.11 The property in which all the transactions will be carried out and executed as if it is the

only transaction in the system is known as _____.

 a consistency b isolation

 c durability d all of above

Q.12 When one schedule can be transformed to another schedule by series of swaps of non-

conflicting instructions, then w say that two schedules are _____.

 a equivalent b serial

 c conflict Equivalent d none of these

Q.13 For a schedule S to be a conflict serializable following condition must hold true ______.

 a there should be different transactions in the schedule.

 b the operations must be performed on same data item.

 c one of the operation must be write operations

 d all of the above

Q.14 ____helps solve concurrency problem.

 a Locking b Transaction monitor

 c Transaction serializability d Two phase commit

Q.15 If a transaction acquires exclusive lock, then it can perform ____operations.

 a read b write

 c read and write d none of these

Q.16 If a transaction acquires a shared lock, then it can perform ____ operation.

 a read b write

 c read and write d none of these

Q.17 Which of the following disallows both dirty reads and nonrepeatable reads, but allows

phantom reads ?

 a Read committed b Read uncommitted

 c Repeatable read d Serializable

Q.18 In a two-phase locking protocol, a transaction release locks in ______ phase.

 a shrinking phase b growing phase

 c running phase d initial phase

Database Management Systems 5 - 65 Unit - IV

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.19 No more lock request can be asked in ___ phase.

 a shrinking phase b growing phase

 c running phase d initial phase

Q.20 ____ is a specific concurrency problem wherein two transactions depend on each other for

something.

 a conflict b deadlock

 c dirty read d uncommitted transaction

 Answer Keys for Multiple Choice Questions :

Q.1 d Q.2 c Q.3 a Q.4 b

Q.5 d Q.6 c Q.7 b Q.8 c

Q.9 b Q.10 c Q.11 b Q.12 c

Q.13 d Q.14 a Q.15 c Q.16 a

Q.17 c Q.18 a Q.19 a Q.20 b

Database Management Systems 5 - 66 Unit - IV

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Notes

(6 - 1)

UNIT - V

6 NoSQL Databases

Syllabus
Introduction to Distributed Database System, Advantages, Disadvantages, CAP Theorem.
Types of Data: Structured, Unstructured Data and Semi-Structured Data.
NoSQL Database : Introduction, Need, Features. Types of NoSQL Databases : Key-value store,
document store, graph, wide column stores, BASE Properties, Data Consistency model, ACID Vs
BASE, Comparative study of RDBMS and NoSQL. MongoDB (with syntax and usage): CRUD
Operations, Indexing, Aggregation, MapReduce, Replication, Sharding.

Contents
6.1 Introduction to Distributed Database System

6.2 CAP Theorem

6.3 Types of Data : Structured, Unstructured Data and Semi-Structured Data

6.4 NoSQL Database

6.5 Types of NoSQL Databases

6.6 BASE Properties

6.7 ACID Vs BASE

6.8 Comparative Study of RDBMS and NoSQL

6.9 MongoDB

Multiple Choice Questions

Database Management Systems 6 - 2 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.1 Introduction to Distributed Database System

A distributed database system consists of loosely coupled sites (computer) that share
no physical components and each site is associated a database system.

The software that maintains and manages the working of distributed databases is
called distributed database management system.

The database system that runs on each site is independent of each other. Refer
Fig. 6.1.1.

Fig. 6.1.1 Distributed database systems

The transactions can access data at one or more sites.

Advantages of Distributed Database System

1) There is fast data processing as several sites participate in request processing.

2) Reliability and availability of this system is high.

3) It possess reduced operating cost.

4) It is easier to expand the system by adding more sites.

5) It has improved sharing ability and local autonomy.

Disadvantages of Distributed Database System

1) The system becomes complex to manage and control.

2) The security issues must be carefully managed.

3) The system require deadlock handling during the transaction processing otherwise
the entire system may be in inconsistent state.

4) There is need of some standardization for processing of distributed database
system.

Database Management Systems 6 - 3 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Difference between Centralized DBMS and Distributed DBMS

Distributed DBMS Centralized DBMS

The database files are stored at geographically
different locations across the network.

The database is stored at centralized location.

As data is distributed over the network , it
requires time to synchronize data and thus
difficult to maintain.

A centralized database is easier to maintain and
keep updated since all the data are stored in a
single location.

If one database fails, user can have access to
other database files.

If the centralized database fails, then there is no
access to a database.

It can have data replication as database is
distributed. Hence there can be some data
inconsistency.

It have single database system, hence there is no
data replication. Therefore there is no data
inconsistency.

Uses of distributed system :

1) Often distributed databases are used by organizations that have numerous offices in
different geographical locations. Typically an individual branch is interacting
primarily with the data that pertain to its own operations, with a much less frequent
need for general company data. In such a situation, distributed systems are useful.

2) Using distributed system, one can give permissions to single sections of the overall
database, for better internal and external protection.

3) If we need to add a new location to a business, it is simple to create an additional
node within the database, making distribution highly scalable.

Review Questions

1. What is distributed database system ? Enlist its advantages and disadvantages.
2. Give the difference between distributed DBMS and centralized DBMS.

 6.2 CAP Theorem

 Cap theorem is also called as brewer’s theorem.

 The CAP Theorem is comprised of three components (hence its name) as they relate
to distributed data stores :

o Consistency : All reads receive the most recent write or an error.

o Availability : All reads contain data, but it might not be the most recent.

Database Management Systems 6 - 4 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

o Partition tolerance : The system continues to operate despite network failures
(i.e.; dropped partitions, slow network connections, or unavailable network
connections between nodes.)

 The CAP theorem states that it is not possible to guarantee all three of the desirable
properties - consistency, availability, and partition tolerance at the same time in a
distributed system with data replication.

Review Question

1. Write a short note on CAP theorem.

 6.3 Types of Data : Structured, Unstructured Data and Semi-Structured Data

Sr.
No.

Structured data Semi-structured data Unstructured data

1. It is having fixed and
organized form of data.

It is combination of structured
and unstructured data.

It is not predefined or
organized form of data.

2. It is schema dependent and
less flexible.

It is more flexible than
structured data but less
flexible than unstructured
data.

It is the most flexible
data.

3. Structured query languages
are used to access the data
present in the schema.

The tags and elements are
used to access the data.

Only textual queries are
possible.

4. Storage requirement for data is
less.

Storage requirements for the
data is significant.

Storage requirements for
the data is huge.

5. Examples : Phone numbers,
Customer Names,Social
Security numbers.

Examples : Server logs, Tweets
organized by hashtags, emails
sorted by the inbox, sent or
draft folders.

Examples : Emails and
messages, Image files,
Open ended survey
answers.

 6.4 NoSQL Database

 6.4.1 Introduction

 NoSQL stands for not only SQL.

 It is nontabular database system that store data differently than relational tables.
There are various types of NoSQL databases such as document, key-value, wide
column and graph.

Database Management Systems 6 - 5 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Using NoSQL we can maintain flexible schemas and these schemas can be scaled
easily with large amount of data.

 6.4.2 Need

The NoSQL database technology is usually adopted for following reasons -

1) The NoSQL databases are often used for handling big data as a part of fundamental
architecture.

2) The NoSQL databases are used for storing and modelling structured, semi-
structured and unstructured data.

3) For the efficient execution of database with high availability, NoSQL is used.

4) The NoSQL database is non-relational, so it scales out better than relational
databases and these can be designed with web applications.

5) For easy scalability, the NoSQL is used.

 6.4.3 Features

1) The NoSQL does not follow any relational model.

2) It is either schema free or have relaxed schema. That means it does not require
specific definition of schema.

3) Multiple NoSQL databases can be executed in distributed fashion.

4) It can process both unstructured and semi-structured data.

5) The NoSQL have higher scalability.

6) It is cost effective.

7) It supports the data in the form of key-value pair, wide columns and graphs.

Review Question

1. What is NoSQL ? What is the need for it. Enlist various feature of NoSQL.

 6.5 Types of NoSQL Databases

There are four types of NoSQL databases and those are -

1. Key-value store

2. Document store

3. Graph based

4. Wide column store

 Let us discuss them in detail.

Database Management Systems 6 - 6 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.5.1 Key-Value Store

 Key-value pair is the simplest type of NoSQL database.

 It is designed in such a way to handle lots of data and heavy load.

 In the key-value storage the key is unique and the value can be JSON, string or
Binary objects.

 For example -
{Customer:
 [
 {“id”:1, “name”:”Ankita”},

 {“id”:2,”name”:”Kavita”}
]
}

Here id, name are the keys and 1,2, “Ankita”, “Prajkta” are the values corresponding
to those keys.

Key-value stores help the developer to store schema-less data . They work best for
Shopping Cart Contents.

The DynamoDB, Riak, Redis are some famous examples of key-value store.

 6.5.2 Document Store

 The document store make use of key-value pair to store and retrieve data.

 The document is stored in the form of XML and JSON.

 The document stores appear the most natural among NoSQL database types.

 It is most commonly used due to flexibility and ability to query on any field.

 For example -

MongoDB and CouchDB are two popular document oriented NoSQL database.

 6.5.3 Graph

The graph database is typically used in the applications where the relationships
among the data elements is an important aspect.

Database Management Systems 6 - 7 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The connections between elements are called links or relationships. In a graph
database, connections are first-class elements of the database, stored directly. In relational
databases, links are implied, using data to express the relationships.

The graph database has two components -

1) Node : The entities itself. For example - People, student,

2) Edge : The relationships among the entities.

For example -

Graph base database is mostly used for social networks, logistics, spatial data. The
graph databases are - Neo4J, Infinite Graph,OrientDB.

 6.5.4 Wide Column Store

 Wide column store model is similar to traditional relational database. In this model,
the columns are created for each row rather than having predefined by the table
structure.

 In this model number of columns are not fixed for each record.

 Columns databases can quickly aggregate the value of a given column.

 For example -

Row ID Columns…

1 Name City

Ankita Pune

2 Name City email

Kavita Mumbai kavita123@gmail.com

The column store databases are widely used to manage data warehouses, business
intelligence, HBase, Cassandra are examples of column based databases.

Review Question

1. Explain different types of NoSQL databases.

Database Management Systems 6 - 8 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.6 BASE Properties

The relational database strongly follow the ACID properties(Atomicity, Consistency,
Isolation and Durability) while the NoSQL database follows BASE properties.

Base properties consists of

1) Basically Available : It means the system is guaranteed to be available in the event
of failure.

2) Soft State : It means, even without an input the system state may change.

3) Eventual Consistency : The system will become consistent over time.

 6.7 ACID Vs BASE

Sr.
No.

ACID BASE

1. It stands for atomicity consistency
isolation and durability.

It stands for basic availability soft state eventual
consistency.

1. It shows consistency. It represents weak consistency.

2. Availability is less important. Availability of system is more important.

3. Evolution is difficult. Evolution is easy.

4. It posses expensive joins and
relationships.

It is free from joins and relationships.

5. It has high maintenance costs. It has low maintenance cost.

6. It provides vertical scaling. It provides horizontal scaling.

Review Question

1. Give the difference between ACID and BASE properties in DBMS.

 6.8 Comparative Study of RDBMS and NoSQL

Sr.
No.

RDBMS NoSQL

1. The relational database system is based
on relationships among the tables.

It is non-relational database system. It can be
used in distributed environment.

2. It is vertically scalable. It is horizontally scalable.

3. It has predefined schema. It does not have schema or it may have relaxed
schema.

Database Management Systems 6 - 9 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

4. It uses SQL to query the database. It uses unstructured query language.

5. It is a table based database. It is document based, graph based or key-value
pair.

6. It emphasizes on ACID properties
(Automicity, consistency, isolation and
durability)

It follows Brewers CAP theorem (Consistency,
availability and partition tolerance)

7. Schema is fixed or rigid. Schema is dynamic.

8. Pessimistic. Optimistic.

9. Examples : MySQL,Oracle, PostgreSQL Examples : MangoDB, BigTable, Redis

Review Question

1. Give the difference between RDBMS and NoSQL.

 6.9 MongoDB

 MongoDB is an open source, document based database.

 It is developed and supported by a company named 10gen which is now known as
MongoDB Inc.

 The first ready version of MongoDB was released in March 2010.

Why MongoDB is needed ?

 There are so many efficient RDBMS products available in the market, then why do we
need MongoDB? Well, all the modern applications require Big data, faster development
and flexible deployment. This need is satisfied by the document based database like
MongoDB.

Features of MongoDB

1) It is a schema-less, document based database system.

2) It provides high performance data persistence.

3) It supports multiple storage engines.

4) It has a rich query language support.

5) MongoDB provides high availability and redundancy with the help of replication.
That means it creates multiple copies of the data and sends these copies to a
different server so that if one server fails, then the data is retrieved from another
server.

Database Management Systems 6 - 10 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

6) MongoDB provides horizontal scalability with the help of sharding. Sharding
means to distribute data on multiple servers.

7) In MongoDB, every field in the document is indexed as primary or secondary. Due
to which data can be searched very efficiently from the database.

SQL Structure Vs. MongoDB

Following figure shows the terms in SQL are treated differently in MongoDB. In

MongoDB the data is not stored in tables, instead of that, the there is a concept called

collection which is analogous to the tables. In the same manner the rows in RDBMS are

called documents in MongoDB, likewise the columns of the record in RDBMS are called

fields.

Fig. 6.9.1

Consider a student database as follows -

To the left hand side we show the database in the form of table and to the right hand
side the database is shown in the form of collection.

Database Management Systems 6 - 11 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 6.9.2 Representation of relational and document based schema

 6.9.1 Data Types

Following are various types of data types supported by MongoDB.

1) Integer : This data type is used for storing the numerical value.

2) Boolean : This data type is used for implementing the Boolean values i.e. true or
false.

3) Double : Double is used for storing floating point data.

4) String : This is the most commonly used data type used for storing the string
values.

5) Min/Max keys : This data type is used to compare a value against the lowest or
highest BSON element.

6) Arrays : For storing an array or list of multiple values in one key, this data type is
used.

7) Object : The object is implemented for embedded documents.

8) Symbol : This data type is similar to string data type. This data type is used to store
specific symbol type.

9) Null : For storing the null values this data type is used.

10) Date : This data type is used to store current date or time. We can also create our
own date or time object.

11) Binary data : In order to store binary data we need to use this data type.

12) Regular expression : This data type is used to store regular expression.

Database Management Systems 6 - 12 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.9.2 MongoDB Installation

For installing the MongoDB go to the web site

https://www.mongodb.com/try/download/community

Choose Software->Community Server. The executable file gets downloaded. Click on
Run to execute it.

When the installation process starts following window gets popped up

Just click on Next button and choose the Complete option for installation. Follow the
normal procedure of installation by clicking the Next button.

Database Management Systems 6 - 13 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Finally you will get following window on successful installation.

Click on Finish button, to complete the installation process.

In order to verify whether it is installed correctly or not, go to command prompt
window and execute the command for mogod.exe file’s version. It is illustrated as
follows -

Issue this command

And you will get this result,
if mongodb is installed
correctly !!

Database Management Systems 6 - 14 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

To set the environment variable, Open System Properties and click on Environment
Variables

Database Management Systems 6 - 15 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Then click on the path variable and set the path of MongoDB by clicking New button.

Then simply continue clicking ok button and just come out of the environment

variable window.

Restart your command prompt window and now simply issue the command mongod
and then mongo at the command prompt window. It will recognise this command and
> prompt will appear

Installing Mongodb Compass (Graphical Tool)

This tool is very useful for handling MongoDB database with the help of simple
graphical user interface.

Database Management Systems 6 - 16 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Select any suitable version as per your operating system. As mine is a Windows
operating system of 64 bit, I have chosen following option.

Database Management Systems 6 - 17 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Click on the Download button. The exe file will get downloaded. Double click the
installer file which is downloaded in your PC and the installation process for MongoDB
Compass will start.

Simply go on clicking Next button, and then click on the install button on the
subsequent window. Finally you will get the installation completion screen.

Database Management Systems 6 - 18 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Just click Finish button. Just click the Start button of Windows, locate MongoDB
Compass Application and simply click it to start the GUI for Mongo DB. You will get
following GUI

If we click the connect button then we get following screen

Database Management Systems 6 - 19 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.9.3 CRUD Operations

 The CRUD operation is a short form of the Create, Read, Update and Delete
operations. These operations are the basic operations that are normally performed on any
database.

Database Commands

In this section we will discuss how to create and handle database in MongoDB using
various commands.

(1) Create Database

Open the command prompt and type the command mongo for starting the mongoDB.
The > prompt will appear. For creating a database we need to use the “use” command.

Syntax

use Database_name

For example

To check the currently selected database, use the command db

We can see the list of databases present in the MongoDB using the command show
dbs

Database Management Systems 6 - 20 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Note that in above listing we can not see the mystudents database. This is because we
have not inserted any document into it. To get the name of the database in the listing by
means of show command, there should be some record present in the database.

(2) Drop Database

The dropDatabase() command is used to delete the database. For example

(3) Create Collection

There are two approaches of creating a collection

Method 1 : We can create a collection directly when we insert a document.

Syntax

db.collection_name.insert({key1:value1,key2:value2})

For example -

We can cross-verify whether the collection is created or not by using following
command

Database Management Systems 6 - 21 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Note that the one document(analogous to row) is getting inserted in the collection
named myemp.

Method 2 : We can create collection explicitly using createCollection command.

Syntax

db.createCollection(name,options)

where

name is the name of collection

options is an optional field. This field is used to specify some parameters such as size,
maximum number of documents and so on.

Following is a list of such options.

Field Type Description

capped Boolean Capped collection is a fixed size collection. It automatically

overwrites the oldest entries when it reaches to maximum size. If it

is set to true, enabled a capped collection. When you specify this

value as true, you need to specify the size parameter.

autoIndexID Boolean This field is required to create index id automatically. Its default

value is false.

size Number This value indicates the maximum size in bytes for a clapped

collection.

Max Number It specifies the maximum number of documents allowed in capped

collection.

Database Management Systems 6 - 22 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

For example - Following command shows how to create collection in a database using
explicit command

(4) Display Collection (Read Operation)

To check the created collection use the command “show collections” at the command
prompt

(5) Drop Collection (Delete Operation)

The drop collection command is actually used to remove the collection completely
from the database. The drop command removes a collection completely from database.

Syntax

db.collection_name.drop()

For example

Database Management Systems 6 - 23 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

We can verify the deletion of the collection by using “show collections” in the
database.

(6) Insert Documents

The document is inserted within the collection. The document is analogous to rows in
database.

Syntax

db.collection_name.insert({key,value}

For example

We can verify this insertion by issuing following command

Inserting Multiple Documents

It is possible to insert multiple documents at a time using a single command.
Following screenshot shows how to insert multiple documents in the existing collection.

Database Management Systems 6 - 24 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Then you will get

In above screenshot, as you can see that it shows number 3 in front of nInserted. This
means that the 3 documents have been inserted by this command.

To verify the existence of these documents in the collection you can use find command
as follows -

Database Management Systems 6 - 25 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

(7) Delete Documents

For deleting the document the remove command is used. This is the simplest
command.

Syntax

db.collection_name.remove(delete_criteria)

For example -

First of all we can find out the documents present in the collection using find()
command

Now to delete a record with name “WWW” we can issue the command as follows -

Database Management Systems 6 - 26 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Now using find() command we can verify if the desired data is deleted or not.

Deleting only one Document

Sometimes the delete criteria matches for more than one records and in such situation,
we can forcefully tell the MongoDB to delete only one document.

Syntax

db.collection_name.remove(delete_criteria, justOne)

The justOne is a Boolean value it can be 1 or 0. If we pass this value as 1 then only one
document will get deleted.

For example

Now it can be verified using find() command as follows -

Database Management Systems 6 - 27 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Note that there were two records that were matching with age = 20 with name “BBB”
and “EEE”, but since we have passed justOne attribute as 1, we get the result by deleting
the single record having name “BBB”

Remove all the documents

 It is possible to remove all the documents present in the collection with the help of
single command.

Syntax

db.collection_name.remove({})

For example

(8) Update Documents

For updating the document we have to provide some criteria based on which the
document can be updated.

Syntax

db.collection_name.update(criteria,update_data)

For example - Suppose the collection “Student_details” contain following documents

Database Management Systems 6 - 28 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

And we want to change the name “CCC” to “WWW”, then the command can be
issued as

This can be verified as

Thus the document gets updated.

By default the update command updates a single document. But we can update
multiple documents as well. For that purpose we have to add {multi:true}

For example

db.Student_details.update({“age”:21},{$set:{“age”:23}},{multi:true})

(9) Sorting

We can use the sort() method for arranging the documents in ascending or descending
order based on particular field of document.

Syntax

For displaying the documents in ascending order we should pass value 1
db.collection_name.find().sort({field_name:1})

If we pass -1 then the document will be displayed in the descending order of the field.

For example

Suppose the collection contains following documents

Database Management Systems 6 - 29 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Now to sort the data in descending order

 If we want to display data in ascending order we issue following command

 6.9.4 Indexing

For efficient execution of queries the indexing is used. If we use the query without
indexes then the execution of that query will be very slow.

Definition of index : Index is a special data structure that store small part of
collection’s data in such a way that we can use it in querying.

The index store the values of index fields outside the table or collection and keep track
of their location in the disk.

Database Management Systems 6 - 30 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Demonstration :

In order to create an index, we will use the database named mystudents (It is created
in section 6.9.1). The collection Student_details will be used for creating index.

1) Index creation

Syntax for creating index is
db.<collection>.createIndex({KEY:1})

The key determines the field on the basis of which the index is created. After the colon
the direction of the key(1 or -1) is used to indicate ascending or descending order.

The MongoDB will generate index names by concatenating the indexed keys with the
direction of each key with underscore as separator. For example if the index is on the field
name and the order as 1 then the index will be created as name_1.

We can also use name option to define custom index name while creating the index.

For example -
> db.Student_details.createIndex({name:1}, {name:"Student's Names"})

The result will be as follows -

Thus index gets created on the collection Student_details.

Database Management Systems 6 - 31 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

2) Find Index

We can find all the available indexes in the MongoDB by using getIndexes method.

Syntax
db.<collection>.getIndexes()

For example –
>db.Student_details.getIndexes()

The result will be

Note that the output contains the default_id index and user created index.

3) Drop Index

 To delete an index we use dropIndex method.

Syntax
db.<collection>.dropIndex(Index Name)

For example
db.Student_details.dropIndex(“Student’s Names”)

The result will be

4) Compound Index

We can create index on multiple fields in MongoDB document. Foe example

Database Management Systems 6 - 32 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

db.Student_details.createIndex({name:1, age:-1})

It will sort by name in ascending order and age in descending order. If the names are
same then the descending order of age can be noticed.

 6.9.5 Aggregation

Aggregation is an operation used to process the data that results the computed results.
The aggregation groups the data from multiple documents and operate on grouped data
to get the combined result. The MongoDB aggregation is equivalent to count(*) and with
group by in sql. MongoDB supports the concept of aggregation framework. The typical
pipeline of aggregation framework is as follows -

 Fig. 6.9.3 Aggregation framework

1) $match() stage - filters those documents we need to work with, those that fit our
needs

2) $group() stage - does the aggregation job

3) $sort() stage - sorts the resulting documents the way we require (ascending or
descending)

The input of the pipeline can be one or several collections. The pipeline then performs
successive transformations on the data and the result is obtained.

Syntax for aggregate operation

db.collection_name.aggregate(aggregate_operation)

Demo Example

For demonstration purpose, I have created a database named CustomerDB inside
which there is a collection document named customers. Some data is already inserted
into it. The contents of customers document are as shown below -

Database Management Systems 6 - 33 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Now issue the following command
> db.customers.aggregate([{$group : {_id: "$type", category: {$sum : 1}}}])

The result will be –

The above command will display total categories of the customers - In our database
there are two types of customers - “Developer” and “Tester”. There are 3 developers and
2 testers in the collection document. The aggregate function is applied on the $group

Similarly if we want to find only Developers from the collection document customers
then we use $match for aggregate function. The demonstration is as follows -

Expressions used by Aggregate function

Expression Description

$sum Summates the defined values from all the documents in a collection

$avg Calculates the average values from all the documents in a collection

$min Return the minimum of all values of documents in a collection

$max Return the maximum of all values of documents in a collection

$addToSet Inserts values to an array but no duplicates in the resulting document

$push Inserts values to an array in the resulting document

$first Returns the first document from the source document

$last Returns the last document from the source document

Database Management Systems 6 - 34 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.9.6 Map Reduce

Map reduce is a data processing programming model that helps in performing
operations on large data sets and produce aggregate results.

Map reduce is used for large volume of data. The syntax for map reduce is
>db.collection.mapReduce(
 function() {emit(key,value);}, map function
 function(key,values) {return reduceFunction}, { reduce function

 out: collection, the collection is created in which the result of mapReduce can be stored

 query: document,
 sort: document,

 limit: number
 }
)

Where

1) map Function : It uses emit() function in which it takes two parameters key and
value key. Here the key is on which we make groups(such as group by name, or
age) and the second parameter is on which aggregation is performed like avg(),
sum() is calculated on.

2) reduce Function : This is a function in which we perform aggregate functions like
avg(), sum()

3) out : It will specify the collection name where the result will be stored.

4) query : We will pass the query to filter the resultset.

5) sort : It specifies the optional sort criteria.

6) limit : It specifies the optional maximum number of documents to be returned.

Demo Example :

Step 1 : Create a collection inside the database mystudents. The collection is created
using name Student_info.

Database Management Systems 6 - 35 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Step 2 : Now we will insert documents inside the collection Student_info using
following command
db.Student_info.insertMany([
{name:"Ankita", marks:96},

 {name:"Ankita", marks:86},
 {name:"Ankita", marks:92},
 {name:"Kavita", marks:87},

 {name:"Kavita", marks:74},
 {name:"Kavita", marks:86 }
])

Now in order to display the contents of the collection we issue the find() command.

Step 3 : Now we will apply mapReduce function

Database Management Systems 6 - 36 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 4 : The output of the mapReduce can be seen with help of find() command. It is
illustrated by following screenshot -

Advantages of mapReduce

1) MapReduce allows the developer to store complex result in separate collection.
2) MapReduce provides the tools to create incremental aggregation over large

collections.
3) It is flexible.

 6.9.7 Replication

Replication is process of making data available across multiple data servers
The replication is mainly used for security purpose. In case of sever failure and

hardware failure the replication is used to restore the data.
The replication in MongoDB is carried out with the help of replica sets.
The replica sets are combination of various MongoDB instances having single primary

node and multiple secondary nodes. The secondary node automatically copies the
changes made to primary in order to maintain the data across all servers. Refer Fig. 6.9.4.

Fig. 6.9.4 Concept of replication

Database Management Systems 6 - 37 NoSQL Databases

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

If the primary node gets failed then the secondary node will take primary node’s role
to provide continuous availability of data. In this case the primary node selection is made
by the process called replica set elections. In this process the most suitable secondary
node will be selected as new primary node.

Benefits of Replication

1) Replication is used for data availability.

2) It is helpful for handling the situations such as hardware failure and server crash.

3) It enhances the performance as data is available across multiple machines and
servers.

 6.9.8 Sharding

 Sharding is a concept in MongoDB, which splits large data sets into small data sets
across multiple MongoDB instances.

 It is not replication of data, but amassing different data from different machines.

 Sharding allows horizontal scaling of data stored in multiple shards or multiple
collections. Logically all the shards work as one collection.

 Sharding works by creating a cluster of MongoDB instances which is made up of
three components.

o Shard : It is a a mongodb instance that contains the sharded data. The
combination of multiple shards create a complete data set.

o Router : This is a mongodb instance which is basically responsible for directing
the commands sent by client to appropriate server.

o Config server : This is mongodb instance which holds the information about
various mongodb instances which hold the shard data.

Review Questions

1. Explain how to perform CRUD operations in MongoDB with illustrative examples.
2. What is replication ? Enlist the advantages of replication in database systems.
3. What is the purpose of mapReduce. Explain it with suitable example.
4. Explain the concept of sharding.

Unit - V
Multiple Choice Questions

Q.1 When a database functionality is achieved using server and multiple clients then that

systems is called ________.

 a database system b web server system

 c client-server system d distributed system

Q.2 In three tier client server system, ____ is responsible for query authentication, parsing and

query submission.

 a database server b application server

 c client d none of these

Q.3 In three tier client server system, ____ represents presentation level.

 a database server b application server

 c client d none of these

Q.4 The three different application logic components in three tier architecture are which of the

following ?

 a Presentation, client and storage

 b Presentation, client and processing

 c Presentation, processing and storage

 d Presentation, processing and network

Q.5 What is P stands for in CAP theorem ?

 a Probability b Partition

 c Partition tolerance d Program

Q.6 “NoSQL” stands for “__”.

 a non SQL b native SQL

 c note SQL d all of the above

Q.7 Which of the following is a NoSQL database ?

 a MySQL b Microsoft ACCESS

 c MongoDB d SQL server

(6 - 38)

Database Management Systems 6 - 39 Unit - V

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.8 What is the aim of NoSQL ?

 a NoSQL databases allow storing non-structured data.

 b NoSQL provides an alternative to SQL databases to store textual.

 c NoSQL is a new data format to store large datasets.

 d NoSQL is not suitable for storing structured data.

Q.9 _______ represent column in NoSQL.

 a Database b Field

 c Document d Collection

Q.10 Which of the following is a NoSQL database type ?

 a SQL b Document databases

 c JSON d All of the mentioned

Q.11 _____ stores are used to store information about networks, such as social connections.

 a Key-value b Wide-column

 c Document d Graph

Q.12 Which of the following is wide-column store ?

 a Cassandra b Riak

 c MongoDB d Redis

Q.13 What is the core principle of NoSQL ?

 a High availability b Low availability

 c Both high & low availability d None of above

Q.14 MongoDB written in ________.

 a C b C++

 c JavaScript d All of the above

Q.15 MongoDB stores all documents in _________.

 a tables b collections

 c rows d all of the mentioned

Q.16 Which of the following format is supported by MongoDB ?

 a SQL b XML

 c BSON or JSON like d All of the mentioned

Q.17 Instead of primary key MongoDB uses _______.

 a Mongo key_id b Mongo_id

 c Default key _id d None of the above

Database Management Systems 6 - 40 Unit - V

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.18 Which of the following operation adds a new document to the users collection ?

 a add b insert

 c truncate d drop

Q.19 ______ can be used for batch processing of data and aggregation operations.

 a Hive b Oozie

 c MapReduce d None of the above

Q.20 MongoDB provides horizontal scaling through _______.

 a replication b partitioning

 c sharding d document

Q.21 In MongoDB _________ operations modify the data of a single collection.

 a CRUD b GRID

 c READ d All of the mentioned

Answer Keys for Multiple Choice Questions :

Q.1 c Q.2 b Q.3 c Q.4 c

Q.5 c Q.6 a Q.7 c Q.8 c

Q.9 b Q.10 b Q.11 d Q.12 a

Q.13 a Q.14 d Q.15 b Q.16 c

Q.17 c Q.18 b Q.19 c Q.20 c

Q.21 a

(7 - 1)

UNIT - VI

7 Advances in Databases

Syllabus
Emerging Databases : Active and Deductive Databases, Main Memory Databases, Semantic
Databases.
Complex Data Types : Semi-Structured Data, Features of Semi-Structured Data Models. Nested
Data Types : JSON, XML. Object Orientation : Object-Relational Database System, Table
Inheritance, Object-Relational Mapping. Spatial Data : Geographic Data, Geometric Data.

Contents

7.1 Emerging Databases

7.2 Complex Data Types

7.3 Nested Data Types

7.4 Object Orientation

7.5 Spatial Data

Multiple Choice Questions

Database Management Systems 7 - 2 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 7.1 Emerging Databases

 Data is growing rapidly. Day by day it is becoming complex to handle such huge
amount of data properly.

 In order to use the data efficiently the database systems are supported by modern
tools and techniques. Emerging databases are those databases that are heavily
influenced both by the evolution of software applications, and by advances in
computing hardware and operating system design.

 In this chapter we will get introduced by advances in databases by learning the
concept of active and deductive databases, complex and nested data types, software
technologies such as JSON and XML, object oriented database management systems
and spatial databases.

 7.1.1 Active and Deductive Databases

Active Databases

 Active databases are the databases which consists of triggers. The situation and
action rules are embedded in the active databases. The active databases are able to
react automatically to the situations in the database. The trigger is a technique for
specifying certain types of active rules. The commercial databases such as Oracle,
DB2, Microsoft SQLServer allows the use of triggers.

Generalized Model for Active Database

The general model for active database is considered as Event-Condition-Action(ECA)
model. This model has three components –

i) Event : The events are database update operations that are performed explicitly on
the databases.

ii) Condition : The condition determines whether the rule action should be executed.
If the action is not specified then the action will be executed automatically on
occurrence of the event.

iii) Action : The action is usually a sequence of SQL statements. It could be a database
transaction or external program that will be executed on occurrence of condition.

Database Management Systems 7 - 3 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

CREATE TABLE PersonTab (

pname VARCHAR2(20)

);

CREATE OR REPLACE TRIGGER MyTrigger

BEFORE INSERT ON PersonTab

FOR EACH ROW

ENABLE

DECLARE

usr_name VARCHAR2(20);

BEGIN

SELECT user INTO usr_name FROM dual;

DBMS_OUTPUT.PUT_LINE('Inserted a new row by user: '||usr_name);

END;

/

INSERT INTO PersonTab VALUES('Sharda');

Deductive Database

 Deductive database is a database system that can make deductions based on rules
and facts stored in the database.

 Deductive databases use the concept of logic programming for specifying the rules
and the facts. Prolog is a popular programming language which is based on the
concept of logic programming.

 There are two types of specifications used in deductive databases –

1) Facts : Facts are specified as the same way the relations are specified in the
Relational Database except it is not necessary to include the attribute names.The
meaning of an attribute value in a tuple is determined solely by its position in the
tuple.

2) Rules : They specify “virtual relations” that are not actually stored but that can be
formed from the facts by applying deduction mechanisms based on the rule
specifications.

Here table named PersonTab is created

Code for actual trigger

SQL query on execution of which the
trigger gets fired.

Database Management Systems 7 - 4 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

For example –

/*Facts*/

man(anand)

man(arun)

woman(anuradha)

woman(jayashree)

parent(anand, parth)

parent(anuradha,parth)

parent(arun,anuradha)

parent(jayashree,anuradha)

/* General Rule */

father(F,C):-man(F),parent(F,C)

mother(M,C):-woman(M),parent(M,C)

Now if we fire a query -?father(X,parth)

Then the answer is X=anand. That means ‘anand is father of parth’.

 7.1.2 Main Memory Databases

 Main memory database system is a kind of database system in which data resides
permanently on main physical memory.

 The backup copy of such database is maintained on the disk.

 Access to main memory is much faster than the disk access, hence transactions gets
completed quickly. It is essential to have backup copy of the database because if the
main memory gets failed then the entire database system gets lost.

 Some popularly used main memory database management systems are CSQL,
TimesTen

 7.1.3 Semantic Databases

 Semantic database management system is a system that stores the meaning of
information as facts about objects.

Database Management Systems 7 - 5 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 Semantic databases represent the data models in which data is arranged in some
logical manner.

 It is a conceptual database system that include semantic information that adds basic
meaning of the data and relationships among the data.

 The semantic database systems allow easy development of application programs
and also it becomes easy to maintain such database system when data is updated.

Features

1. Semantic database systems are exceptionally usable and flexible.

2. They have shorter application design and programming cycle.

3. It provides user control via an intuitive structure of information.

4. It empowers the end-users to pose complex, ad-hoc, decision support queries.

5. These are highly efficient database systems.

Review Questions

1. Explain active and deductive database systems.
2. Write short note on – semantic databases.

 7.2 Complex Data Types

 7.2.1 Semi-Structured Data

 Semi structured data is a kind of data that can’t be organized in relational
databases. This is a kind of data which does not have structural framework but it
might have some structural properties.

 Semi-structured data is basically a combination of structured and unstructured
data. For example - Facebook that organizes information by User, Friends, Groups,
Marketplace, etc., but the comments and text contained in these categories is
unstructured.

 The semi-structured data does not reside in relational database. By applying some
processes we can store them in relational database.

 XML(eXtensible Markup Language) is widely used to store and exchange semi-
structured data.

 Examples of semi-structured data are -

1. Emails

 2. Web pages

Database Management Systems 7 - 6 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 3. XML documents

 4. Zipped files

 5. Binary executables

Advantages

1. The semi-structured data is flexible as schema can be changed accordingly.

2. Data is portable.

3. The heterogeneous information can be stored in semi-structured data.

4. There is no need to express the requirements in pure SQL only.

Disadvantages

1. As there is no fixed schema, storing the data is complex.

2. Querying the database is less efficient as the data is in semi-structured manner.

3. Interpretation of relationship among data is difficult.

Difference between Structured and Unstructured Data

Sr.
No.

Structured data Semi-structured data Unstructured data

1. It is having fixed and
organized form of data.

It is combination of
structured and
unstructured data.

It is not predefined or
organized form of data.

2. It is schema dependent and
less flexible.

It is more flexible than
structured data but less
flexible than
unstructured data.

It is the most flexible data.

3. Structured query languages
are used to access the data
present in the schema

The tags and elements are
used to access the data.

Only textual queries are
possible.

4. Storage requirement for data
is less.

Storage requirements for
the data is significant.

Storage requirements for the
data is huge.

5. Examples : Phone numbers,
Customer Names,Social
Security numbers.

Examples : Server logs,
Tweets organized by
hashtags, emails sorted
by the inbox, sent or draft
folders.

Examples : Emails and
messages, Image files, Open
ended survey answers.

Database Management Systems 7 - 7 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 7.2.2 Features of Semi-Structured Data Models

1. The semi-structured data can not be stored in the form of rows and columns in
databases.

2. The semi structured data does not obey the tabular structure of data models. But it
has some structure.

3. Semi-structured data contains tags and elements which is used to group data and
describe how data is stored.

4. The entities can be grouped together based on their properties.

5. The entities in the same group may or may not have the same attributes(properties).

6. As the semi-structured data does not have well defined structure, it can not be
programmed easily by the traditional programming languages.

Review Question

1. Enlist the features of semi-structured data model.

 7.3 Nested Data Types

 Nested data types are structured data types for some common data patterns. Nested
data types support arrays,structs and maps.

 For example – array is a homogeneous collection of elements of same data type
elements. For instance : phone number can be stored as [98-230-11111]

struct employee
{
 Name string,

 id int,
 struct address
 {

 House-no int,
Street string,
 City string

 }
}

 7.3.1 JSON

 JSON stands for JavaScript object notation.

 Using JSON we can store and retrieve data. This text based open standard format.

 It is extended from JavaScript language.

Database Management Systems 7 - 8 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Features of JSON

1. It is text based, lightweight data interchange format.

2. It is language independent.

3. It is easy to read and write.

4. It is easy for machines to parse and generate.

5. It uses the conventions that are familiar to the languages like C, C++, Java,
JavaScript, Perl, Python and so on.

Structure of JSON

JSON is built on two structures :

1. A collection of name/value pairs. In various languages, this is realized as an object,
record, struct, dictionary, hash table, keyed list, or associative array.

2. An ordered list of values. In most languages, this is realized as an array, vector, list,
or sequence.

JSON Object

 JSON object holds the Key value pair.

 Each key is represented as string and value can be of any datatype.

 The key and value are separated by colon.

 Syntax
 { string : value,}

 For example
 “Age”:38

 Each key value pair is separated by comma.

 The object is written within the { }curly brackets.

1) JSON object containing value of different data types

{
 “student”: {
 “name”: AAA”, String value
 “roll_no”: 10, Numeric value
 “Indian”: true Boolean value

 }

}

Database Management Systems 7 - 9 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

2) JSON Nested Object

{
 “student”: {
 “name”: “AAA”,

 “roll_no”: 10,
 “address”: {
 “Street”: “Shivaji Nagar”,

 “City”: “Pune”,
 “Pincode”: 411005
 }

 }

}

 7.3.2 XML

 XML stands for eXtensible Markup Language.

 This scripting language is similar to HTML. That means, this scripting language
contains various tags. But these tags are not predefined tags, in-fact user can define
his own tags.

 Thus HTML is designed for representation of data on the web page whereas the
XML is designed for transport or to store data.

Uses of XML

1. XML is used to display the meta contents i.e. XML describes the content of the
document.

2. XML is useful in exchanging data between the applications.

3. The data can be extracted from database and can be used in more than one
application. Different applications can perform different tasks on this data.

Advantages of XML

1. XML document is human readable and we can edit any XML document in simple
text editors.

2. The XML document is language neutral. That means a Java program can generate
an XML document and this document can be parsed by Perl.

3. Every XML document has a tree structure. Hence complex data can be arranged
systematically and can be understood in simple manner.

4. XML files are independent of an operating system.

Database Management Systems 7 - 10 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Goals of XML

Following are the goals of XML -

1. User must be able to define and use his own tag. This allows us to restrict the use of
the set of tags defined by proprietary vendors.

2. Allow user to build his own tag library based on his web requirement.

3. Allow user to define the formatting rules for the user defined tags.

4. XML must support for storage or transport of data.

Features of XML

Following are some features which are most suitable for creating web related
applications.

 XML is EXtesible Markup Language intended for transport or storage of the data.

 The most important feature of XML is that user is able to define and use his own
tag.

 XML contains only data and does not contain any formatting information. Hence
document developers can decide how to display the data.

 XML permits the document writer to create the tags for any type of information.
Due to this virtually any kind of information can be such as mathematical formulae,
chemical structures, or some other kind of data can be described using XML.

 Searching sorting, rendering or manipulating the XML document is possible using
Extended Stylesheet Language (XSL).

 The XML document can be validated using some external tools.

 Some commonly used web browsers like Internet Explorer and Firefox Mozilla
provide support to the tags in XML. Hence XML is not at all vendor specific or
browser specific.

 7.3.3 Difference between XML and HTML

Sr.
No.

HTML XML

1. HTML stands for Hypertext Markup
Language.

XML stands for eXtensible Markup
Language.

2. HTML is designed to display data with the
focus on look and feel of data.

XML is used to transport and store data, with
focus on what data is.

3. HTML is case insensitive. XML is case sensitive.

Database Management Systems 7 - 11 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

4. HTML has predefined tags. XML has custom tags can be defined and the
tags are invented by the author of the XML
document.

5. As HTML is for displaying the data it is
static.

As XML is for carrying the data it is dynamic.

6. It can not preserve white space. It can preserve the white space.

 7.3.4 Example of XML

<bank>
 <account>

 <account-number> S101 </account-number>
 <branch-name> Shivaji Nagar </branch-name>
 <balance> 5000 </balance>

 </account>
 <account>
 <account-number>C102 </account-number>

 <branch-name> Model Colony </branch-name>
 <balance> 4000 </balance>
 </account>

 <customer>
 <customer-name> Ram Kumar </customer-name>
 <customer-street> Fergusson Road</customer-street>

 <customer-city> Pune </customer-city>
 </customer>
 <customer>

 <customer-name> Shiv Prasad </customer-name>
 <customer-street> Main Road </customer-street>
 <customer-city> Nasik </customer-city>

 </customer>
 <depositor>
 <account-number> S101 </account-number>

 <customer-name> RamKumar </customer-name>
 </depositor>
 <depositor>

 <account-number> C102 </account-number>
 <customer-name> Shiv Prasad </customer-name>
 </depositor>

</bank>

Fig. 7.3.1 XML representation of bank information

Database Management Systems 7 - 12 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 7.3.5 Building Blocks of XML Document

Various building blocks of XML are -

1. Elements

The basic entity is element. The elements are used for defining the tags. The elements
typically consist of opening and closing tag. Mostly only one element is used to define a
single tag.

2. Attribute

The attributes are generally used to specify the values of the element. These are
specified within the double quotes.

For example -
 <flag type=”True”>

The type attribute of the element flag is having the value True.

3. CDATA

CDATA stands for Character Data. This character data will be parsed by the parser.

4. PCDATA

It stands for Parsed Character Data (i.e. text).

 7.3.6 Concept of Namespace

 Sometimes we need to create two different elements by the same name. The xml
document allows us to create different elements which are having the common
name. This technique is known as namespace.

 In some web documents it becomes necessary to have the same name for two
different elements. Here different elements mean the elements which are intended
for different purposes. In such a case support for namespace technique is very much
helpful.

 For example : Consider the following xml document -

namespacedemo.xml

<File-Description>

 <text fname="input.txt">
 <describe>It is a text file</describe>
 </text>

 <text fname="flower.jpg">
 <describe>It is an image file</describe>
 </text>

</File-Description>

Database Management Systems 7 - 13 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

The above document does not produce any error although the element text is used for
two different attribute values. The output will be,

 7.3.7 Document Type Definition (DTD)

 The document type definition is used to define the basic building block of any xml
document.

 Using DTD we can specify the various elements types, attributes and their
relationship with one another.

 Basically DTD is used to specify the set of rules for structuring data in any XML file.

 For example : If we want to put some information about some students in XML file
then, generally we use tag student followed by his/her name, address, standard
and marks. That means we are actually specifying the manner by which the
information should be arranged in the XML file. And for this purpose the
Document Type Definition is used.

 There are two ways by which DTD can be defined.

Internal DTD

Consider following xml document –

Database Management Systems 7 - 14 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

XML Document [DTDDemo1.xml]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE student [
<!ELEMENT student (name,address,std,marks)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT std (#PCDATA)>

<!ELEMENT marks (#PCDATA)>
]>
<student>

<name>Anand</name>
 <address>Pune</address>
 <std>Second</std>

 <marks>70 percent</marks>
</student>

Output

External DTD

In this type, an external DTD file is created and its name must be specified in the
corresponding XML file. Following XML document illustrates the use of external DTD.

Step 1 : Creation of DTD file [student.dtd]

Open some suitable text editor or a notepad. Type following code into it -
<!ELEMENT student (name,address,std,marks)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>

<!ELEMENT std (#PCDATA)>
<!ELEMENT marks (#PCDATA)>

Now save this file as student.dtd

Here we are defining the DTD
internally

Database Management Systems 7 - 15 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Step 2 : Creation of XML document -

XML Document [DTDDemo.xml]

Now create a XML document as follows -
<?xml version="1.0"?>
<!DOCTYPE student SYSTEM "student.dtd">
<student>

 <name>Anand</name>
 <address>Pune</address>
 <std>Second</std>

 <marks>70 percent</marks>
 </student>

Step 3 : Using some web browser open the XML document.

Output

Merits of DTD

1. DTDs are used to define the structural components of XML document.

2. These are relatively simple and compact.

3. DTDs can be defined inline and hence can be embedded directly in the XML
document.

Demerits of DTD

1. The DTDs are very basic and hence cannot be much specific for complex
documents.

2. The language that DTD uses is not an XML document. Hence various frameworks
used by XML cannot be supported by the DTDs.

The external DTD file is created

Database Management Systems 7 - 16 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

3. The DTD cannot define the type of data contained within the XML document.
Hence using DTD we cannot specify whether the element is numeric, or string or of
date type.

4. There are some XML processor which do not understand DTDs.

5. The DTDs are not aware of namespace concept.

Review Questions

1. What is JSON ? Explain it with suitable example.
2. What is XML? Enlist its features.

 7.4 Object Orientation

 An object-oriented database (OODBMS) or object database management system
(ODBMS) is a database that is based on object-oriented programming (OOP). The
data is represented and stored in the form of objects.

 OODBMS are also called object databases or object-oriented database management
systems.

 Challenges in Designing OODBMS

1. There is no universally agreed data model for OODBMS. Hence no universal
standard is followed while designing the OODBMS based applications.

2. The OODBMS is complex due to handling of complex datatypes, information
hiding, inheritance and other object oriented features.

3. The OODBMS does not provide view mechanism. Therefore the developer can not
have limited view of the physical database system.

4. There is lack of security mechanism in maintaining OODBMS.

5. The OODBMS has scalability and resource usage limitation, including database
server.

6. As amount of data generated and collected explodes, OODBMS is struggling to
keep up.

7. Although there are benefits to decentralize data management and communication
among them using data objects, it presents challenges as well. How will the data be
distributed? What are the best methods of decentralization? There is a major
challenge in designing and managing the database of such systems.

8. In order to handle OODBMS, it requires skilled people who know object oriented
technology thoroughly well.

Database Management Systems 7 - 17 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Difference between ODBMS and DBMS

OODBMS DBMS

OODBMS stands for Object Oriented Database

Management System that supports creating

and modelling of data as objects.

DBMS is any Database Management System.

The most popular DBMS are relational database

management systems in which we store

everything as a relation between entities.

Handles larger and complex data than RDBMS. Handles comparatively simpler data.

Data Handling - Stores data as well as methods

to use it.

Data Handling - RDBMS stores only data.

OODBMS is object-oriented. RDBMS is table-oriented.

OODBMS uses inheritance and encapsulation

to reduce data redundancy.

Normalization is used to eliminate data

redundancy in RDBMS.

Examples - Object Database, Objectivity/DB,

ObjectStore, Cache, and, ZODB

Examples - MSSQL, MySQL, and Oracle

 7.4.1 Object-Relational Database System

 Object relational database system is a database system which is based on object
relation model. It provides the migration path for the users of relational databases
who wish to use object oriented features.

 There are two commonly addressed issues for supporting object relational database
systems -

1. Build object oriented database systems(OODBMS) that natively support object
oriented type system and allows direct access to data from object oriented
programming language using the native type system of the language.

2. Automatically convert data from the native type system of programming language
to relational representation and vice versa.This data conversion is specified as
object relational mapping.

 7.4.2 Table Inheritance

 Table inheritance is a feature where there are sub-tables in Relational database
management systems that inherit the schema of parent tables.

Database Management Systems 7 - 18 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

 For example – Following statements demonstrate how to achieve table inheritance
 create table people of Person; Parent table
 create table students of Student Child table
 under people;

 create table teachers of Teacher Child table
 under people;

 As a result of above statements, every attribute present in the people table is also
present in the subtables students and teachers. Similarly every tuple present in the
students or teachers become implicitly present in people.

 Using the keyword only in the query we can restrict the access to particular table.
For example – if we want to find the tuples that are present in the people table but
not in its subtables then we should use “only people”

 7.4.3 Object-Relational Mapping

 Object oriented relational mapping is an approach in which object oriented
programming language is integrated with databases.

 The object-relational mapping allows a programmer to define mapping between
tuples in database relations and objects in the programming language.

 An object can be retrieved based on the selection condition on its attributes.

 The object oriented programs can be used to create an object, update the objects and
delete the object. Similarly mapping from object to relations is possible by updating,
deleting, and inserting tuples in the database.

 Hibernate is an open source object relational mapping tool for the Java platform.

Advantages

1. It supports object oriented features such as inheritance, polymorphism, association
and so on.

2. Instead of plain data, the object relational mapping return objects. These objects can
be easily accessed, programmed and permanently stored in memory.

3. Object relational mapping systems also provide query languages that allow
programmer to write queries directly on the object model. Such queries are
translated into SQL queries for underlying relational database.

Disadvantages

1. The query language for object relational mapping systems have limited capabilities.

2. There is significant overhead on the object relation system when there occurs bulk
database update.

Database Management Systems 7 - 19 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Review Questions

1. Explain the concept of table inheritance with suitable example.
2. Explain object relational mapping. Give its advantages and disadvantages.

 7.5 Spatial Data

 Spatial data means data related to space.

 The special data in the database system allows it to store, index and query the data
based on the basis of special locations.

 Spatial data represents location, size and shape of an object on the earth. For
example - City, location of school, or location of hospital is represented with the
help of spatial data.

 7.5.1 Geometric Data

 Various geometric data constructs can be represented in a database in normalized
fashion.

 Following is a list of various geometric constructions and the description on how to
store the information of these geometric constructs in the database systems –

Line : The line segment is represented by co-ordinates of its endpoints.

Curve : Approximate a curve by partitioning it into a storage. Create a list of
vertices in order. Represent each segment as a separate tuple that also carries with it
the identifier of the curve.

Closed polygons :

i) It is represented as list of vertices in order starting vertex is the same as ending
vertex.

ii) Represent boundary edges as separate tuples with identifier.

iii) Use triangulation – Divide polygon into triangles. Use identifier for each triangles.

Line segment

{(a1,b1), (a2,b2)}

Triangle

{(a1,b1), (a2,b2), (a3,b3)}

Database Management Systems 7 - 20 Advances in Databases

TECHNICAL PUBLICATIONS® - an up- thrust for knowledge

Polygon

{(a1,b1), (a2,b2), (a3,b3), (a4,b4), (a5,b5)}

Polygon

{(a1,b1), (a2,b2), (a3,b3), ID1} {(a1,b1), (a3,b3),

(a4,b4), ID2} {(a1,b1), (a4,b4), (a5,b5), ID3}

 The 3D shapes are represented in the similar manner as of 2D shapes. But it has
extra z component.

 7.5.2 Geographic Data

 Geographic data are spatial in nature. For example – maps and satellite images are
geometric data.

 Maps not only provides the location but along with location it also provides
detailed information about the location.

Applications of geographic data

1) Web based road map services which allows us to use map data for vehicle
navigation.

2) Vehicle navigation systems store information about roads and services for use of
drivers.

3) Global Positioning System (GPS) information broadcasts from GPS satellites to find
the current location of user with some accuracy.

Representation of geographic data

 There are two types of geographic data
1. Raster data : Raster data consists of bit maps or pixel maps in two or more

dimensions. For example – 2D raster image : Satellite image of cloud cover, where
each pixel stores the cloud visibility in a particular area.

2. Vector data : The vector data is constructed from basic geometric objects such as
points, line segments, polygon, triangles and so on. The vector data is always used
to represent the map data. For instance – roads can be considered as two
dimensional(2D) and represented by lines and curves. Rivers may be represented as
complex curves. The regions and lakes can be represented using polygons.

Review Question

1. Explain geographic data in detail.

Unit - VI
Multiple Choice Questions

Q.1 XML stands for ________.

 a Extra Markup Language b Excellent Markup Links

 c Extended Markup Language d Extended Marking Links

Q.2 Which statement is true ?

 a All the statements are true.

 b All XML elements must have a closing tag.

 c All XML elements must be lower case.

 d All XML documents must have a DTD.

Q.3 XML is designed to ____________ and store data.

 a design b verify

 c transport d none of these

Q.4 What does DTD stand for ?

 a Direct Type Definition b Document Type Definition

 c Dynamic Type Definition d Dynamic Tag Definition

Q.5 What is the full form of JSON ?

 a JavaScripts Object Notification b JavaScript Object Notation

 c Java Object Notation d None of these

Q.6 Which is the file extension of JSON ?

 a .jsn b .json

 c .jn d .js

Q.7 What is JSON data ?

 a Exchanging data b Non-exchanging data

 c Changing data d None of these

Q.8 What are two main structures compose JSON ?

 a Arrays and structures b Keys and values

 c Classes and objects d Pointers and References

(7 - 21)

Database Management Systems 7 - 22 Unit - VI

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.9 The _________________model is a database model where there is no separation between

the data and the schema.

 a semi - structured b structured

 c both a & b d none of these

Q.10 An _________________ is a database that includes an event-driven architecture.

 a active database b temporal database

 c spatial database d deductive databases

Q.11 Most ________________ allow the representation of simple geometric objects such as

points, lines and polygons.

 a active database b temporal database

 c spatial database d deductive databases

Answers Keys for Multiple Choice Questions :

Q.1 c Q.2 b Q.3 c Q.4 b

Q.5 b Q.6 b Q.7 a Q.8 b

Q.9 a Q.10 a Q.11 c

Object Oriented Programming - 1 S - 1 Solved University Question Paper

TECHNICAL PUBLICATIONS
® - An up thrust for knowledge

Solved Model Question Paper (In Sem)
Database Management Systems

T.E. (Computer) Semester - V (As Per 2019 Pattern)
Time : 1 Hour] [Maximum Marks : 30

N.B : i. Attempt Q.1 or Q.2, Q.3 or Q.4.

ii. Neat diagrams must be drawn wherever necessary.

iii. Figures to the right side indicate full marks.

iv. Assume suitable data, if necessary.
Q.1 a) What is DBMS ? Enlist the characteristics of DBMS. (Refer section 1.1) [4]

 b) Explain advantages of DBMS over file system. (Refer section 1.3) [3]

 c) Draw and explain overall structure of database system. (Refer section 1.8) [8]

OR

Q.2 a) Explain mapping cardinality representation in ER diagram with the help of illustrative
examples. (Refer section 1.17.1) [5]

 b) Construct an E R diagram for library management system.
(Refer example 1.21.9) [10]

Q.3 a) i) Explain aggregate functions used in SQL with suitable examples.
(Refer section 2.17) [6]

 ii) Consider, the following database,

 Student(RollNo, Name, Address)

 Subject(Sub_code, Sub_Name)

 Marks (Roll_no, Sub_code, Marks)

 Write following queries in SQL.

 Find average marks of each student, along with the name of Student.
(Refer example 2.17.1) [3]

 b) Write SQL statements for the following (any five)

 Consider the following database

 pilot (pid, pname)

 flight (fid, ftype, capacity)

 route (pid, fid, from_city, to_city)

(M - 1)

Database Management Systems M - 2 Solved Model Question Papers

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 i) List the details of flights having capacity more than 300.

 ii) List the flights between 'Surat' and 'Mumbai'.
 iii) List the names of the pilots who fly from 'Pune'.
 iv) List the route on which, pilot named 'Mr Kapoor' flies
 v) List the pilots whose names, starts with letter 'A' %' but does not end with

letter 'A'.
 vi) List the name of pilots who fly 'boing 737' type of flights.

(Refer example 2.22.2) [6]
OR

Q.4 a) What are different set Operations used in SQL ? Explain. (Refer section 2.18) [5]

 b) Write the PL/SQL block of code to calculate the factorial value of a number.
(Refer example 3.9.3) [4]

 c) Write PL/SQL trigger for following requirement :

 Event : Deletion of row from stud (roll_no, name, class) table.
 Action : After deletion of values from stud table, values should be inserted into

cancel_admission (roll_no, name) table
 Note : For every row to be deleted, action should be performed.

(Refer example 3.13.2) [6]

Solved Model Question Paper (End Sem)
Database Management Systems

T.E. (Computer) Semester - V (As Per 2019 Pattern)

Time : 2
1
2 Hours] [Maximum Marks : 70

N.B : i. Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.

ii. Neat diagrams must be drawn wherever necessary.

iii. Figures to the right side indicate full marks.

iv. Assume suitable data, if necessary.
Q.1 a) Explain in brief - Codd’s rules. (Refer section 4.3) [10]

 b) Explain the concept of referential integrity constraint with example.
(Refer section 4.5) [8]

Database Management Systems M - 3 Solved Model Question Papers

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

OR

Q.2 a) Give R = {A,B,C,G,H,I}. The following set F of functional dependencies holds

 A -> B, A -> C, CG -> H, CG -> I , B -> H

 Computer AG+ . Is AG candidate key ? (Refer example 4.11.7) [6]

 b) What is the difference between 3NF and BCNF ? (Refer example 4.18.8) [6]

 c) Students_Detail (Stud_id, Stud_name, Zip, City)

 Consider above schema, check whether it is in 3NF, if not justify and propose the
schema in 3NF. (Refer example 4.17.7) [6]

Q.3 a) State and explain ACID properties. (Refer section 5.3) [5]

 b) Consider the three transactions T1, T2, and T3 and schedules S1 and S2 given below.
Determine whether each schedule is serializable or not ? If a schedule is serializable
write down the equivalent serial schedule(S).

 T1: R1(x) R1(z);W1(x);

 T2: R2(x);R2(y);W2(z);W2(y)

 T3:R3(x);R3(y);W3(y);

 S1: R1(x);R2(z);R1(z);R3(x);R3(y);W1(x);W3(y);R2(y);W2(z);W2(y);

 S2: R1(x);R2(z);R3(x);R1(z);R2(y);R3(y);W1(x);W2(z);W3(y);W2(y);
(Refer example 5.5.4) [7]

 c) Explain the concept of cascadeless schedule. (Refer section 5.6) [5]

OR

Q.4 a) Explain the concept of concurrency control. (Refer section 5.7) [2]

 b) What is two phase locking protocol ? Explain it in detail. (Refer section 5.9.3) [8]

 c) Write short note on - Shadow paging. (Refer section 5.14) [7]

Q.5 a) Explain in brief - CAP theorem. (Refer section 6.2) [4]

 b) What are different types of NoSQL database ? Explain in detail. (Refer section 6.5)[8]

 c) What is distributed system ? Give its advantages and disadvantages.
(Refer section 6.1) [6]

OR

Q.6 a) Explain the CRUD operations used in MongoDB. (Refer section 6.9.3) [8]

 b) Explain the concept of aggregation in MongoDB. (Refer section 6.9.5) [6]

 c) Give the difference between ACID and BASE properties. (Refer section 6.7) [4]

Database Management Systems M - 4 Solved Model Question Papers

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.7 a) What is active and deductive databases. (Refer section 7.1.1) [6]

 b) Explain the structure of JSON with example. (Refer section 7.3.1) [6]

 c) Write short note on - Semi-structured data. (Refer section 7.2.1) [5]

OR

Q.8 a) Write XML representation of bank information. (Refer section 7.3.4) [10]

 b) Write short note on - spatial data. (Refer section 7.5) [7]

Made in India

9 7 8 9 3 9 1 5 6 7 3 4 7

	1_Title-Press_2021
	2_Preface
	3_Syllabus
	4_TOC
	1_1
	1_2
	1_3
	1_4
	2_1
	2_2
	2_3
	3_1
	3_2
	3_3
	4_1
	4_2
	4_3
	4_4
	5_1
	5_2
	5_3
	5_4
	6_1
	6_2
	6_3
	7_1
	7_2
	7_3
	Model Paper

